Added status, error message fields, contamination map to response
This commit is contained in:
parent
cc410f58dc
commit
a36163f731
189
views.py
189
views.py
@ -12,7 +12,7 @@ from astropy.stats import poisson_conf_interval
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
from django.db.models import Sum
|
||||
from django.db.models import Sum, Max
|
||||
from django.shortcuts import get_object_or_404
|
||||
from rest_framework.views import APIView
|
||||
from rest_framework.response import Response
|
||||
@ -221,118 +221,132 @@ class UpperLimitView(APIView):
|
||||
# exclude contaminated pixels from the background calculations
|
||||
annulus_pixels = annulus_pixels.exclude(contaminated=True)
|
||||
|
||||
status_int = 0
|
||||
error_message = ""
|
||||
|
||||
if not source_pixels.exists() or not annulus_pixels.exists():
|
||||
return Response(
|
||||
{
|
||||
"detail": "No background and/or source pixel data for the given survey selection."
|
||||
},
|
||||
status=status.HTTP_404_NOT_FOUND,
|
||||
)
|
||||
status_int = 1 # status 1 if there are no source or bg pixels
|
||||
|
||||
# COMPUTE COUNTS, BACKGROUND ESTIMATE, EXPOSURE
|
||||
# **************************************************************
|
||||
try:
|
||||
# summing counts across all surveys
|
||||
N = sum(obj.counts for obj in source_pixels)
|
||||
|
||||
# summing counts across all surveys
|
||||
N = sum(obj.counts for obj in source_pixels)
|
||||
Nnpix = len(source_pixels)
|
||||
|
||||
Nnpix = len(source_pixels)
|
||||
Bcounts = sum(obj.counts for obj in annulus_pixels)
|
||||
|
||||
Bcounts = sum(obj.counts for obj in annulus_pixels)
|
||||
Bnpix = len(annulus_pixels)
|
||||
|
||||
Bnpix = len(annulus_pixels)
|
||||
B = Bcounts / Bnpix * Nnpix
|
||||
|
||||
B = Bcounts / Bnpix * Nnpix
|
||||
# create a dict of exposures keyed by survey
|
||||
t_by_survey = defaultdict(list)
|
||||
|
||||
# create a dict of exposures keyed by survey
|
||||
t_by_survey = defaultdict(list)
|
||||
for pixel in source_pixels:
|
||||
t_by_survey[pixel.survey].append(pixel.exposure)
|
||||
|
||||
for pixel in source_pixels:
|
||||
t_by_survey[pixel.survey].append(pixel.exposure)
|
||||
# create and populate a list of average exposures per survey
|
||||
survey_averages = []
|
||||
|
||||
# create and populate a list of average exposures per survey
|
||||
survey_averages = []
|
||||
for survey_id, exposures in t_by_survey.items():
|
||||
average_exposure = sum(exposures) / len(exposures)
|
||||
survey_averages.append(average_exposure)
|
||||
|
||||
for survey_id, exposures in t_by_survey.items():
|
||||
average_exposure = sum(exposures) / len(exposures)
|
||||
survey_averages.append(average_exposure)
|
||||
# sum them up across surveys
|
||||
t = sum(survey_averages)
|
||||
|
||||
# sum them up across surveys
|
||||
t = sum(survey_averages)
|
||||
# CONSTANTS
|
||||
# **************************************************************
|
||||
|
||||
# CONSTANTS
|
||||
# **************************************************************
|
||||
# EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90
|
||||
# ECF = 4e-11 # energy conversion factor
|
||||
|
||||
# EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90
|
||||
# ECF = 4e-11 # energy conversion factor
|
||||
EEF = 0.80091 # use values from the paper
|
||||
ECF = 3.3423184e-11
|
||||
|
||||
EEF = 0.80091 # use values from the paper
|
||||
ECF = 3.3423184e-11
|
||||
# BAYESIAN IMPLEMENTATION VIA POISSON_CONF_INTERVAL
|
||||
# **************************************************************
|
||||
|
||||
# BAYESIAN IMPLEMENTATION VIA POISSON_CONF_INTERVAL
|
||||
# **************************************************************
|
||||
|
||||
# double sided interval
|
||||
low, high = poisson_conf_interval(
|
||||
n=N,
|
||||
background=B,
|
||||
interval="kraft-burrows-nousek",
|
||||
confidence_level=confidence_level,
|
||||
)
|
||||
|
||||
# because poisson_conf_interval returns lists
|
||||
bayesian_count_ul = high[0]
|
||||
bayesian_count_ll = low[0]
|
||||
|
||||
bayesian_count_UL = (
|
||||
sp.gammaincinv(
|
||||
N + 1, confidence_level * sp.gammaincc(N + 1, B) + sp.gammainc(N + 1, B)
|
||||
# double sided interval
|
||||
low, high = poisson_conf_interval(
|
||||
n=N,
|
||||
background=B,
|
||||
interval="kraft-burrows-nousek",
|
||||
confidence_level=confidence_level,
|
||||
)
|
||||
- B
|
||||
)
|
||||
|
||||
bayesian_rate_ul = bayesian_count_ul / t / EEF # count rate limits
|
||||
bayesian_rate_ll = bayesian_count_ll / t / EEF
|
||||
bayesian_rate_UL = bayesian_count_UL / t / EEF
|
||||
# because poisson_conf_interval returns lists
|
||||
bayesian_count_ul = high[0]
|
||||
bayesian_count_ll = low[0]
|
||||
|
||||
bayesian_flux_ul = bayesian_rate_ul * ECF # flux limits
|
||||
bayesian_flux_ll = bayesian_rate_ll * ECF
|
||||
bayesian_flux_UL = bayesian_rate_UL * ECF
|
||||
bayesian_count_UL = (
|
||||
sp.gammaincinv(
|
||||
N + 1,
|
||||
confidence_level * sp.gammaincc(N + 1, B) + sp.gammainc(N + 1, B),
|
||||
)
|
||||
- B
|
||||
)
|
||||
|
||||
# CLASSICAL IMPLEMENTATION VIA GAMMAINCCINV
|
||||
# ****************************************************************
|
||||
bayesian_rate_ul = bayesian_count_ul / t / EEF # count rate limits
|
||||
bayesian_rate_ll = bayesian_count_ll / t / EEF
|
||||
bayesian_rate_UL = bayesian_count_UL / t / EEF
|
||||
|
||||
# confidence level for the double sided interval
|
||||
cl2 = (1 + confidence_level) / 2
|
||||
# double sided interval
|
||||
classic_count_ul = sp.gammainccinv(N + 1, 1 - cl2) - B
|
||||
classic_count_ll = sp.gammainccinv(N, cl2) - B
|
||||
# one sided interval
|
||||
classic_count_UL = sp.gammainccinv(N + 1, 1 - confidence_level) - B
|
||||
bayesian_flux_ul = bayesian_rate_ul * ECF # flux limits
|
||||
bayesian_flux_ll = bayesian_rate_ll * ECF
|
||||
bayesian_flux_UL = bayesian_rate_UL * ECF
|
||||
|
||||
if not np.isfinite(classic_count_ll) or classic_count_ll < 0:
|
||||
classic_count_ll = 0.0
|
||||
# CLASSICAL IMPLEMENTATION VIA GAMMAINCCINV
|
||||
# ****************************************************************
|
||||
|
||||
classic_rate_ul = classic_count_ul / t / EEF # count rate limits
|
||||
classic_rate_ll = classic_count_ll / t / EEF
|
||||
classic_rate_UL = classic_count_UL / t / EEF
|
||||
# confidence level for the double sided interval
|
||||
cl2 = (1 + confidence_level) / 2
|
||||
# double sided interval
|
||||
classic_count_ul = sp.gammainccinv(N + 1, 1 - cl2) - B
|
||||
classic_count_ll = sp.gammainccinv(N, cl2) - B
|
||||
# one sided interval
|
||||
classic_count_UL = sp.gammainccinv(N + 1, 1 - confidence_level) - B
|
||||
|
||||
classic_flux_ul = classic_rate_ul * ECF # flux limits
|
||||
classic_flux_ll = classic_rate_ll * ECF
|
||||
classic_flux_UL = classic_rate_UL * ECF
|
||||
if not np.isfinite(classic_count_ll) or classic_count_ll < 0:
|
||||
classic_count_ll = 0.0
|
||||
|
||||
# FLUX ESTIMATION
|
||||
# ****************************************************************
|
||||
classic_rate_ul = classic_count_ul / t / EEF # count rate limits
|
||||
classic_rate_ll = classic_count_ll / t / EEF
|
||||
classic_rate_UL = classic_count_UL / t / EEF
|
||||
|
||||
S = N - B # counts as simply counts within aperture
|
||||
# with the background estimate subtracted
|
||||
classic_flux_ul = classic_rate_ul * ECF # flux limits
|
||||
classic_flux_ll = classic_rate_ll * ECF
|
||||
classic_flux_UL = classic_rate_UL * ECF
|
||||
|
||||
CR = S / t / EEF # source count rate
|
||||
# FLUX ESTIMATION
|
||||
# ****************************************************************
|
||||
|
||||
BR = B / t # background rate within aperture
|
||||
S = N - B # counts as simply counts within aperture
|
||||
# with the background estimate subtracted
|
||||
|
||||
FL = CR * ECF # conversion to flux
|
||||
CR = S / t / EEF # source count rate
|
||||
|
||||
Flux = max(FL, 0) # flux cannot be lower than zero
|
||||
BR = B / t # background rate within aperture
|
||||
|
||||
FL = CR * ECF # conversion to flux
|
||||
|
||||
Flux = max(FL, 0) # flux cannot be lower than zero
|
||||
|
||||
# handle exceptions: write error text to the response
|
||||
# zero out all math results
|
||||
except Exception as e:
|
||||
|
||||
error_message = str(e)
|
||||
|
||||
N = Nnpix = Bcounts = Bnpix = B = t = S = CR = BR = 0.0
|
||||
Flux = 0.0
|
||||
classic_count_ul = classic_count_ll = classic_count_UL = 0.0
|
||||
classic_rate_ul = classic_rate_ll = classic_rate_UL = 0.0
|
||||
classic_flux_ul = classic_flux_ll = classic_flux_UL = 0.0
|
||||
bayesian_count_ul = bayesian_count_ll = bayesian_count_UL = 0.0
|
||||
bayesian_rate_ul = bayesian_rate_ll = bayesian_rate_UL = 0.0
|
||||
bayesian_flux_ul = bayesian_flux_ll = bayesian_flux_UL = 0.0
|
||||
|
||||
# NEARBY SOURCES CHECK
|
||||
# ****************************************************************
|
||||
@ -372,7 +386,7 @@ class UpperLimitView(APIView):
|
||||
}
|
||||
)
|
||||
|
||||
# SQUARE REGION IMAGE SERVING
|
||||
# REGION IMAGE SERVING
|
||||
# ****************************************************************
|
||||
|
||||
# default value if not specified in the query
|
||||
@ -396,7 +410,10 @@ class UpperLimitView(APIView):
|
||||
map_pixels_qs = (
|
||||
Pixel.objects.filter(hpid__in=map_pixel_list, survey__in=survey_numbers)
|
||||
.values("hpid")
|
||||
.annotate(counts=Sum("counts"))
|
||||
.annotate(
|
||||
counts=Sum("counts"),
|
||||
contaminated=Max("contaminated"),
|
||||
)
|
||||
.order_by("hpid")
|
||||
)
|
||||
|
||||
@ -406,6 +423,7 @@ class UpperLimitView(APIView):
|
||||
# get lists of healpix indices and count values
|
||||
map_healpix_list = [d["hpid"] for d in map_pixels_list]
|
||||
map_counts_list = [d["counts"] for d in map_pixels_list]
|
||||
map_contaminated_list = [d["contaminated"] for d in map_pixels_list]
|
||||
|
||||
# set map nside
|
||||
map_nside = 4096
|
||||
@ -417,6 +435,7 @@ class UpperLimitView(APIView):
|
||||
map_dict = {
|
||||
"healpix": map_healpix_list,
|
||||
"counts": map_counts_list,
|
||||
"contaminated": map_contaminated_list,
|
||||
"nside": map_nside,
|
||||
"order": map_order,
|
||||
"radius_as": map_radius,
|
||||
@ -426,6 +445,10 @@ class UpperLimitView(APIView):
|
||||
# ****************************************************************
|
||||
|
||||
result = {
|
||||
"Status": status_int,
|
||||
# 0 OK
|
||||
# 1 either source or bg pixels missing
|
||||
"ErrorMessage": error_message,
|
||||
# frequentist limits
|
||||
"ClassicUpperLimit": classic_count_ul,
|
||||
"ClassicLowerLimit": classic_count_ll,
|
||||
|
Loading…
x
Reference in New Issue
Block a user