upper limit NaN fix; ECF & EEF values update

This commit is contained in:
Никита Тырин 2025-05-13 15:38:03 +03:00
parent d46e5e5fa6
commit ffaa663fdd
3 changed files with 222 additions and 21 deletions

View File

@ -0,0 +1,176 @@
# uplim/management/commands/set_contaminated.py
# add custom flux-radius mapping?
# add specifying the columns?
# do contamination setting per survey?
# include nside for surveys?
from django.core.management.base import BaseCommand
import pandas as pd
import healpy as hp
import numpy as np
from astropy.coordinates import SkyCoord
from uplim.models import Pixel
class Command(BaseCommand):
help = "Set the 'contaminated' flag for all pixels based on the fluxes in the provided catalog."
# COMMAND LINE ARGUMENTS
# **********************
def add_arguments(self, parser):
parser.add_argument(
'--catalog',
type=str,
required=False,
help='Path to the catalog.dat file'
)
# parser.add_argument(
# '--survey',
# type=int,
# required=False,
# help='integer number of the survey to set the flag for'
# )
parser.add_argument(
'--reset',
action='store_true',
default=False,
help='Reset the contamination flag across all pixels back to False.'
)
def handle(self, *args, **options):
# RESET BEHAVIOR: SET CONTAMINATION FLAG TO FALSE FOR ALL PIXELS
# **************************************************************
if options['reset']:
self.stdout.write("Resetting the contamination flag...")
Pixel.objects.update(contaminated = False)
self.stdout.write("Done")
return
if not options['catalog']:
self.stdout.write("No catalog file provided, exiting")
return
catalog_file = options['catalog']
self.stdout.write(f"Catalog file:\t{catalog_file}")
# READ THE CATALOG FILE USING PANDAS READ_FWF
# *******************************************
# Define column positions based on the byte ranges in your table
colspecs = [
(0, 4), # SrcID (1-4)
(5, 26), # Name (6-26)
(27, 37), # RAdeg (28-37)
(38, 48), # DEdeg (39-48)
(49, 55), # ePos (50-55)
(56, 63), # Signi (57-63)
(64, 76), # Flux (65-76)
(77, 89), # e_Flux (78-89)
(90, 118), # CName (91-118)
(119, 120),# NewXray (120)
(121, 134) # Type (122-134)
]
# Define column names
colnames = [
"SrcID", "Name", "RAdeg", "DEdeg", "ePos", "Signi", "Flux",
"e_Flux", "CName", "NewXray", "Type"
]
# Read the file using the fixed-width format
catalog = pd.read_fwf(catalog_file, colspecs=colspecs, names=colnames)
self.stdout.write(str(catalog.head()))
# hard coded nside and flux-radius mapping
# maybe change that
nside = 4096
npix = hp.nside2npix(nside)
flux_bins = [0, 125, 250, 2000, 20000, np.inf] # define bin edges
mask_radii_deg = [ 0.06, 0.15, 0.5, 0.9, 2.5 ] # corresponding mask radii in degrees
# Convert mask radii from degrees to radians (required by query_disc)
mask_radii = [np.radians(r) for r in mask_radii_deg]
# Use pandas.cut to assign each source a bin index (0, 1, or 2)
catalog['flux_bin'] = pd.cut(catalog['Flux'], bins=flux_bins, labels=False)
# manually add and change some sources
manual_additions = pd.DataFrame(
[
{'RAdeg' : 279.9804336, 'DEdeg' : 5.0669542, 'flux_bin' : 3},
{'RAdeg' : 266.5173685, 'DEdeg' : -29.1252321, 'flux_bin' : 3},
]
)
catalog = pd.concat([catalog, manual_additions], ignore_index=True)
catalog.loc[catalog['SrcID'] == 1101, 'flux_bin'] = 2
mask_array = np.ones(npix, dtype=bool)
masked_pixels_set = set()
self.stdout.write("\nCreating a list of contaminated pixels...")
# process each source in the catalog
for _, row in catalog.iterrows():
ra = row['RAdeg']
dec = row['DEdeg']
src_coord = SkyCoord(
ra, dec, unit = 'deg', frame = 'icrs'
)
gal = src_coord.galactic
ra, dec = gal.l.deg, gal.b.deg
flux_bin = row['flux_bin'] # 0, 1, or 2
# Get the corresponding mask radius (in radians) for this flux bin
radius = mask_radii[flux_bin]
# Convert (ra, dec) to HEALPix spherical coordinates
theta = np.radians(90.0 - dec)
phi = np.radians(ra)
vec = hp.ang2vec(theta, phi)
# Query all pixels within the given radius
# 'inclusive=True' makes sure pixels on the edge are included
pix_indices = hp.query_disc(nside, vec, radius, inclusive=True)
# Mark these pixels as bad (False) in our mask
mask_array[pix_indices] = False
# Add the pixel indices to our set of masked pixels
masked_pixels_set.update(pix_indices)
# Convert the set of masked pixels to a sorted list.
masked_pixels_list = sorted(list(masked_pixels_set))
# print("Number of masked pixels:", len(masked_pixels_list))
self.stdout.write("\nList ready, updating the database...")
if masked_pixels_list:
Pixel.objects.filter(hpid__in=masked_pixels_list).update(contaminated=True)
self.stdout.write(f"\nMarked {len(masked_pixels_list)} pixels as contaminated.")
else:
self.stdout.write("No pixels marked as contaminated, exiting.")

View File

@ -10,12 +10,8 @@ class Survey(models.Model):
number = models.IntegerField(unique=True) number = models.IntegerField(unique=True)
# nside = models.IntegerField(
# default=4096
# )
def __str__(self): def __str__(self):
return f"Survey {self.number} of NSIDE {self.nside}" return f"Survey {self.number}"
@ -23,7 +19,7 @@ class Survey(models.Model):
class Pixel(models.Model): class Pixel(models.Model):
id = models.AutoField(primary_key=True) #id = models.AutoField(primary_key=True) # ~2 million pixels for a 4096 survey
survey = models.ForeignKey( survey = models.ForeignKey(
Survey, Survey,
@ -32,17 +28,17 @@ class Pixel(models.Model):
default=0 default=0
) )
hpid = models.IntegerField(db_index=True) hpid = models.IntegerField(db_index=True) # up to over 200 million
counts = models.IntegerField() counts = models.IntegerField() # f4, up to ~44k integer: 2 byte too small
exposure = models.FloatField() exposure = models.FloatField() # f4, up to ~13300 float
contaminated = models.BooleanField(default=False) contaminated = models.BooleanField(default=False)
class Meta: class Meta:
constraints = [ constraints = [
UniqueConstraint(fields=['survey', 'hpid'], name='unique_hpid_per_survey'), UniqueConstraint(fields=['survey','hpid'], name='unique_hpid_per_survey'),
] ]
def __str__(self): def __str__(self):

View File

@ -5,6 +5,7 @@
import healpy as hp import healpy as hp
import astropy.units as u import astropy.units as u
from astropy.coordinates import SkyCoord from astropy.coordinates import SkyCoord
import numpy as np
import scipy.special as sp import scipy.special as sp
from astropy.stats import poisson_conf_interval from astropy.stats import poisson_conf_interval
@ -18,6 +19,22 @@ from django.shortcuts import get_object_or_404
from uplim.models import Pixel from uplim.models import Pixel
# SANITIZE RESPONSE DATA BEFORE JSON CONVERSION FOR DEBUGGING NANS
# now NaNs are converted to 'null' beforehand
# ****************************************************************
def sanitize(obj):
if isinstance(obj, dict):
return {k: sanitize(v) for k, v in obj.items()}
if isinstance(obj, (list, tuple)):
return [sanitize(v) for v in obj]
# handle numpy scalars
if isinstance(obj, np.generic):
v = obj.item()
return None if (np.isnan(v) or np.isinf(v)) else v
if isinstance(obj, float):
return None if (np.isnan(obj) or np.isinf(obj)) else obj
return obj
# SURVEY PARAMETER PARSER # SURVEY PARAMETER PARSER
@ -247,9 +264,11 @@ class UpperLimitView(APIView):
# CONSTANTS # CONSTANTS
# ************************************************************** # **************************************************************
EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90 #EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90
ECF = 4e-11 # energy conversion factor #ECF = 4e-11 # energy conversion factor
EEF = .80091 # use values from the paper
ECF = 3.3423184e-11
# BAYESIAN IMPLEMENTATION VIA POISSON_CONF_INTERVAL # BAYESIAN IMPLEMENTATION VIA POISSON_CONF_INTERVAL
@ -268,7 +287,7 @@ class UpperLimitView(APIView):
bayesian_rate_ul = bayesian_count_ul / t / EEF # count rate limits bayesian_rate_ul = bayesian_count_ul / t / EEF # count rate limits
bayesian_rate_ll = bayesian_count_ll / t / EEF bayesian_rate_ll = bayesian_count_ll / t / EEF
bayesian_flux_ul = bayesian_rate_ul * ECF # flux limits bayesian_flux_ul = bayesian_rate_ul * ECF # flux limits
bayesian_flux_ll = bayesian_rate_ll * ECF bayesian_flux_ll = bayesian_rate_ll * ECF
# CLASSICAL IMPLEMENTATION VIA GAMMAINCCINV # CLASSICAL IMPLEMENTATION VIA GAMMAINCCINV
@ -277,28 +296,32 @@ class UpperLimitView(APIView):
classic_count_ul = sp.gammainccinv(N+1, 1 - confidence_level) - B classic_count_ul = sp.gammainccinv(N+1, 1 - confidence_level) - B
classic_count_ll = sp.gammainccinv(N, confidence_level) - B classic_count_ll = sp.gammainccinv(N, confidence_level) - B
classic_count_ll = max(classic_count_ll, 0) if not np.isfinite(classic_count_ll) or classic_count_ll < 0:
classic_count_ll = 0.0
classic_rate_ul = classic_count_ul / t / EEF # count rate limits classic_rate_ul = classic_count_ul / t / EEF # count rate limits
classic_rate_ll = classic_count_ll / t / EEF classic_rate_ll = classic_count_ll / t / EEF
classic_flux_ul = classic_rate_ul * ECF # flux limits classic_flux_ul = classic_rate_ul * ECF # flux limits
classic_flux_ll = classic_rate_ll * ECF classic_flux_ll = classic_rate_ll * ECF
# FLUX ESTIMATION # FLUX ESTIMATION
# **************************************************************** # ****************************************************************
S = N - B # counts as simply counts within aperture S = N - B # counts as simply counts within aperture
# with the background estimate subtracted # with the background estimate subtracted
CR = S / t / EEF # count rate CR = S / t / EEF # count rate
FL = CR * ECF # conversion to flux FL = CR * ECF # conversion to flux
Flux = max(FL, 0) # flux cannot be lower than zero Flux = max(FL, 0) # flux cannot be lower than zero
# RESULT ASSEMBLY
# ****************************************************************
return Response({ result = {
'ClassicUpperLimit' : classic_count_ul, 'ClassicUpperLimit' : classic_count_ul,
'ClassicLowerLimit' : classic_count_ll, 'ClassicLowerLimit' : classic_count_ll,
@ -316,6 +339,8 @@ class UpperLimitView(APIView):
'FluxEstimate' : Flux, 'FluxEstimate' : Flux,
# raw counts and exposure omitted from the response
# 'N' : N, # 'N' : N,
# 'Nnpix' : Nnpix, # 'Nnpix' : Nnpix,
# 'Bcounts' : Bcounts, # 'Bcounts' : Bcounts,
@ -324,4 +349,8 @@ class UpperLimitView(APIView):
# 'tsum' : tsum, # 'tsum' : tsum,
# 't' : t # 't' : t
}, status=status.HTTP_200_OK) }
clean = sanitize(result) # calling sanitize() to convert NaN to null
return Response(clean, status=status.HTTP_200_OK)