Compare commits
29 Commits
abfa40d1a3
...
main
Author | SHA1 | Date | |
---|---|---|---|
a2c528644c | |||
3f4ca4075f | |||
c62826c8b8 | |||
f680039e9a | |||
d346bbadbc | |||
709918571f | |||
90b938a934 | |||
c144285f88 | |||
85a96b5fb2 | |||
ebf8e11866 | |||
e2d0afa4c5 | |||
e01941f06b | |||
42c63547b1 | |||
a36163f731 | |||
cc410f58dc | |||
ada05dd34b | |||
fdc26bc4c4 | |||
5e0ecc9cc9 | |||
03cdfa01b0 | |||
3c5aed6a41 | |||
26f848d274 | |||
cf3213a0f9 | |||
6154679dd2 | |||
982e5e8680 | |||
a8cf963dee | |||
bfaf103729 | |||
ffaa663fdd | |||
d46e5e5fa6 | |||
f0b505330f |
22
README.md
22
README.md
@@ -1,8 +1,5 @@
|
||||
# uplim
|
||||
|
||||
test
|
||||
|
||||
|
||||
ART-XC upper limits django application
|
||||
|
||||
## Management commands
|
||||
@@ -13,13 +10,16 @@ Allows to populate the database with data for a survey in healpix format. Takes
|
||||
|
||||
Syntax: python manage.py load_survey --counts='*path_to_counts_map*' --exposure='*path_to_exposure_map*' --survey_number=*integer survey number* --batch_size=*number of pixels to insert in one transaction*
|
||||
|
||||
- set_contaminated
|
||||
|
||||
Load catalog.dat catalog into the database or update it. Set the contamination flag based on the catalog of sources (catalog.dat file). Includes a --reset option to reset the flag to False on all pixels.
|
||||
|
||||
Syntax: python manage.py set_contaminated --catalog='*path to catalog.dat*'
|
||||
|
||||
## Models (models.py)
|
||||
|
||||
- Survey:
|
||||
- survey number
|
||||
|
||||
- Pixel:
|
||||
- survey foreign key
|
||||
- survey number
|
||||
- hpid (healpix pixel id)
|
||||
- counts
|
||||
- exposure
|
||||
@@ -27,23 +27,23 @@ Syntax: python manage.py load_survey --counts='*path_to_counts_map*' --exposure=
|
||||
|
||||
## Views (views.py)
|
||||
|
||||
**Before public deployment views providing direct pixel data should be altered to not include it in the response json.**
|
||||
|
||||
- PixelAggregateView:
|
||||
For testing, outputs the aggregated data across specified surveys for a healpix pixel.
|
||||
|
||||
Returns:
|
||||
Sum of counts and exposure over specified surveys for the specified pixel.
|
||||
|
||||
URL: /api/pixel-aggregate/?pixel=123&survey=1
|
||||
/api/pixel-aggregate/?pixel=123&survey=1
|
||||
|
||||
(/api/pixel-aggregate/?pixel=123&survey=1,3,5)
|
||||
|
||||
(/api/pixel-aggregate/?pixel=123&survey=1-5)
|
||||
|
||||
- UpperLimitView:
|
||||
The view providing upper limit calculation.
|
||||
|
||||
Returns:
|
||||
Upper and lower limits in units of counts, count rate, and physical flux for Bayesian and classic approaches, as well as a count rate estimate and aperture photometry data (counts in the aperture, background estimate, etc).
|
||||
Upper and lower limits in units of counts, count rate, and physical flux for Bayesian and classic approaches, as well as a count rate estimate and aperture photometry data (counts in the aperture, background estimate, etc). Also whether or not the apertures contain any pixels marked as contaminated, as well as a list of nearby sources.
|
||||
|
||||
URL: /api/upper-limit/?ra=10.0&dec=10.0&cl=.95&survey=1 (or list 1,3,5 or hyphenated range 1-5).
|
||||
|
||||
|
1545
catalog.dat
Normal file
1545
catalog.dat
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,21 +1,24 @@
|
||||
# uplim/management/commands/load_survey.py
|
||||
|
||||
import numpy as np
|
||||
|
||||
from astropy.io import fits
|
||||
from itertools import islice
|
||||
from datetime import datetime
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.db import transaction
|
||||
from uplim.models import Pixel, Survey
|
||||
from uplim.models import Pixel
|
||||
from django.db.models import Max
|
||||
|
||||
from itertools import islice
|
||||
|
||||
from datetime import datetime
|
||||
from tqdm import tqdm
|
||||
import sys
|
||||
|
||||
# DEFINE BATCH SIZE AND BATCH
|
||||
# **************************************************************
|
||||
|
||||
#BATCH_SIZE = 1000000
|
||||
# BATCH_SIZE = 1000000
|
||||
|
||||
|
||||
def batch(iterable, size):
|
||||
"""
|
||||
@@ -29,8 +32,6 @@ def batch(iterable, size):
|
||||
yield chunk
|
||||
|
||||
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
help = "Process FITS files and store the data in the database"
|
||||
|
||||
@@ -39,40 +40,33 @@ class Command(BaseCommand):
|
||||
|
||||
def add_arguments(self, parser):
|
||||
parser.add_argument(
|
||||
'--counts',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Path of the counts file'
|
||||
"--counts", type=str, required=True, help="Path of the counts file"
|
||||
)
|
||||
parser.add_argument(
|
||||
'--exposure',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Path of the exposure file'
|
||||
"--exposure", type=str, required=True, help="Path of the exposure file"
|
||||
)
|
||||
parser.add_argument(
|
||||
'--survey_number',
|
||||
"--survey_number",
|
||||
type=int,
|
||||
required=True,
|
||||
help='Integer ID of the survey being read'
|
||||
help="Integer ID of the survey being read",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--batch_size',
|
||||
"--batch_size",
|
||||
type=int,
|
||||
required=True,
|
||||
help='Integer number of pixels to be inserted into the database at once'
|
||||
default=1000,
|
||||
help="Integer number of pixels to be inserted into the database at once",
|
||||
)
|
||||
|
||||
|
||||
def handle(self, *args, **options):
|
||||
|
||||
# GET FILENAMES FROM ARGUMENTS
|
||||
# **************************************************************
|
||||
|
||||
counts_file = options['counts']
|
||||
exposure_file = options['exposure']
|
||||
survey_number = options['survey_number']
|
||||
BATCH_SIZE = options['batch_size']
|
||||
counts_file = options["counts"]
|
||||
exposure_file = options["exposure"]
|
||||
survey_number = options["survey_number"]
|
||||
BATCH_SIZE = options["batch_size"]
|
||||
|
||||
self.stdout.write(f"\nCounts file:\t{counts_file}")
|
||||
self.stdout.write(f"Exposure file:\t{exposure_file}")
|
||||
@@ -87,7 +81,6 @@ class Command(BaseCommand):
|
||||
|
||||
counts_data = counts_map.ravel()
|
||||
|
||||
|
||||
with fits.open(exposure_file) as hdul:
|
||||
|
||||
column_name = "T"
|
||||
@@ -104,53 +97,67 @@ class Command(BaseCommand):
|
||||
total_pixels = counts_data.shape[0]
|
||||
self.stdout.write(f"\nTotal pixels to insert:\t{total_pixels}")
|
||||
|
||||
assert counts_data.shape == exposure_data.shape, "Counts and exposure maps must have the same shape"
|
||||
assert (
|
||||
counts_data.shape == exposure_data.shape
|
||||
), "Counts and exposure maps must have the same shape"
|
||||
|
||||
# CREATE THE SURVEY IF IT DOES NOT EXIST
|
||||
# **************************************************************
|
||||
|
||||
with transaction.atomic():
|
||||
# with transaction.atomic():
|
||||
|
||||
survey,created = Survey.objects.get_or_create(number=survey_number)
|
||||
# survey,created = Survey.objects.get_or_create(number=survey_number)
|
||||
|
||||
if created:
|
||||
self.stdout.write(f"Created a new survey instance with number: {survey.number}")
|
||||
else:
|
||||
self.stdout.write(f"Using existing survey instance with the number: {survey.number}")
|
||||
# if created:
|
||||
# self.stdout.write(f"Created a new survey instance with number: {survey.number}")
|
||||
# else:
|
||||
# self.stdout.write(f"Using existing survey instance with the number: {survey.number}")
|
||||
|
||||
# FETCH THE LAST PROCESSED HPID AND CONTINUE FROM IT
|
||||
# **************************************************************
|
||||
|
||||
last_hpid = (
|
||||
Pixel.objects
|
||||
.filter(survey=survey)
|
||||
.aggregate(max_hpid=Max('hpid'))['max_hpid']
|
||||
Pixel.objects.filter(survey=survey_number).aggregate(max_hpid=Max("hpid"))[
|
||||
"max_hpid"
|
||||
]
|
||||
or -1
|
||||
)
|
||||
start_index = last_hpid + 1
|
||||
|
||||
pixels_to_insert = total_pixels - start_index
|
||||
|
||||
if pixels_to_insert <= 0:
|
||||
self.stdout.write("All pixels have already been inserted. Exiting.")
|
||||
|
||||
pixel_generator = (
|
||||
Pixel(
|
||||
hpid=i,
|
||||
counts=int(count),
|
||||
exposure=float(exposure),
|
||||
survey=survey
|
||||
survey=survey_number,
|
||||
)
|
||||
for i, (count, exposure) in enumerate(zip(counts_data, exposure_data))
|
||||
if i >= start_index
|
||||
)
|
||||
|
||||
|
||||
total_inserted = start_index
|
||||
|
||||
pbar = tqdm(
|
||||
total=pixels_to_insert,
|
||||
unit="pix",
|
||||
desc=f"Survey {survey_number}",
|
||||
# file=sys.stdout,
|
||||
)
|
||||
|
||||
# Process in batches
|
||||
for pixel_batch in batch(pixel_generator, BATCH_SIZE):
|
||||
with transaction.atomic():
|
||||
Pixel.objects.bulk_create(pixel_batch)
|
||||
total_inserted += len(pixel_batch)
|
||||
percentage = total_inserted / total_pixels * 100
|
||||
timestamp = datetime.now().strftime("%H:%M:%S")
|
||||
self.stdout.write(
|
||||
f"[{timestamp}] {percentage:.2f}% inserted"
|
||||
)
|
||||
# total_inserted += len(pixel_batch)
|
||||
# percentage = total_inserted / total_pixels * 100
|
||||
# timestamp = datetime.now().strftime("%H:%M:%S")
|
||||
# self.stdout.write(f"[{timestamp}] {percentage:.2f}% inserted")
|
||||
pbar.update(BATCH_SIZE)
|
||||
|
||||
self.stdout.write(f"Inserted a total of {total_inserted} pixels.")
|
||||
pbar.close()
|
||||
self.stdout.write(f"Done: Inserted a total of {total_inserted} pixels.")
|
||||
|
307
management/commands/set_contaminated.py
Normal file
307
management/commands/set_contaminated.py
Normal file
@@ -0,0 +1,307 @@
|
||||
# uplim/management/commands/set_contaminated.py
|
||||
|
||||
# add custom flux-radius mapping?
|
||||
# add specifying the columns?
|
||||
# do contamination setting per survey?
|
||||
# include nside for surveys?
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.db import transaction
|
||||
from uplim.models import Pixel, CatalogSource
|
||||
|
||||
import pandas as pd
|
||||
import healpy as hp
|
||||
import numpy as np
|
||||
from astropy.coordinates import SkyCoord
|
||||
|
||||
from itertools import islice
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
BATCH_SIZE = 900
|
||||
|
||||
|
||||
def batch(iterable, size):
|
||||
iterable = iter(iterable)
|
||||
while True:
|
||||
chunk = list(islice(iterable, size))
|
||||
if not chunk:
|
||||
break
|
||||
yield chunk
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
help = "Set the 'contaminated' flag for all pixels based on the fluxes in the provided catalog."
|
||||
|
||||
# COMMAND LINE ARGUMENTS
|
||||
# **********************
|
||||
|
||||
def add_arguments(self, parser):
|
||||
|
||||
parser.add_argument(
|
||||
"--catalog", type=str, required=False, help="Path to the catalog.dat file"
|
||||
)
|
||||
|
||||
# parser.add_argument(
|
||||
# '--survey',
|
||||
# type=int,
|
||||
# required=False,
|
||||
# help='integer number of the survey to set the flag for'
|
||||
# )
|
||||
|
||||
parser.add_argument(
|
||||
"--reset",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Reset the contamination flag across all pixels back to False.",
|
||||
)
|
||||
|
||||
def handle(self, *args, **options):
|
||||
|
||||
# RESET BEHAVIOR: SET CONTAMINATION FLAG TO FALSE FOR ALL PIXELS
|
||||
# **************************************************************
|
||||
|
||||
if options["reset"]:
|
||||
|
||||
self.stdout.write("Resetting the contamination flag...")
|
||||
|
||||
Pixel.objects.update(contaminated=False)
|
||||
|
||||
self.stdout.write("Done")
|
||||
return
|
||||
|
||||
if not options["catalog"]:
|
||||
self.stdout.write("No catalog file provided, exiting")
|
||||
return
|
||||
|
||||
catalog_file = options["catalog"]
|
||||
|
||||
self.stdout.write(f"Catalog file:\t{catalog_file}")
|
||||
|
||||
# READ THE CATALOG FILE USING PANDAS READ_FWF
|
||||
# *******************************************
|
||||
|
||||
# Define column positions based on the byte ranges
|
||||
colspecs = [
|
||||
(0, 4), # SrcID (1-4)
|
||||
(5, 26), # Name (6-26)
|
||||
(27, 37), # RAdeg (28-37)
|
||||
(38, 48), # DEdeg (39-48)
|
||||
(49, 55), # ePos (50-55)
|
||||
(56, 63), # Signi (57-63)
|
||||
(64, 76), # Flux (65-76)
|
||||
(77, 89), # e_Flux (78-89)
|
||||
(90, 118), # CName (91-118)
|
||||
(119, 120), # NewXray (120)
|
||||
(121, 134), # Type (122-134)
|
||||
]
|
||||
|
||||
# Define column names
|
||||
colnames = [
|
||||
"SrcID",
|
||||
"Name",
|
||||
"RAdeg",
|
||||
"DEdeg",
|
||||
"ePos",
|
||||
"Signi",
|
||||
"Flux",
|
||||
"e_Flux",
|
||||
"CName",
|
||||
"NewXray",
|
||||
"Type",
|
||||
]
|
||||
|
||||
# Read the file using the fixed-width format
|
||||
catalog = pd.read_fwf(catalog_file, colspecs=colspecs, names=colnames)
|
||||
|
||||
for col in ["Name", "CName", "Type"]:
|
||||
catalog[col] = catalog[col].fillna("")
|
||||
|
||||
self.stdout.write(str(catalog.head()))
|
||||
|
||||
# LOAD THE CATALOG INTO THE DATABASE
|
||||
# **********************************
|
||||
|
||||
existing_srcids = set(CatalogSource.objects.values_list("srcid", flat=True))
|
||||
|
||||
to_create = []
|
||||
|
||||
for _, row in catalog.iterrows():
|
||||
|
||||
srcid = int(row["SrcID"])
|
||||
if srcid in existing_srcids:
|
||||
continue
|
||||
to_create.append(
|
||||
CatalogSource(
|
||||
srcid=srcid,
|
||||
name=row["Name"].strip(),
|
||||
ra_deg=float(row["RAdeg"]),
|
||||
dec_deg=float(row["DEdeg"]),
|
||||
pos_error=float(row["ePos"]),
|
||||
significance=float(row["Signi"]),
|
||||
flux=float(row["Flux"]),
|
||||
flux_error=float(row["e_Flux"]),
|
||||
catalog_name=row["CName"].strip(),
|
||||
new_xray=bool(int(row["NewXray"])),
|
||||
source_type=row["Type"].strip(),
|
||||
)
|
||||
)
|
||||
|
||||
if to_create:
|
||||
self.stdout.write(f"Inserting {len(to_create)} new catalog rows.")
|
||||
for chunk in batch(to_create, BATCH_SIZE):
|
||||
CatalogSource.objects.bulk_create(chunk, ignore_conflicts=True)
|
||||
self.stdout.write("Catalog update complete.")
|
||||
else:
|
||||
self.stdout.write("All catalog rows already exist in the database.")
|
||||
|
||||
# hard coded nside and flux-radius mapping
|
||||
# maybe change
|
||||
|
||||
nside = 4096
|
||||
npix = hp.nside2npix(nside)
|
||||
|
||||
# flux_bins = [0, 125, 250, 2000, 20000, np.inf] # define bin edges
|
||||
# mask_radii_deg = [
|
||||
# 0.06,
|
||||
# 0.15,
|
||||
# 0.5,
|
||||
# 0.9,
|
||||
# 2.5,
|
||||
# ] # corresponding mask radii in degrees
|
||||
|
||||
# # Convert mask radii from degrees to radians (required by query_disc)
|
||||
# mask_radii = [np.radians(r) for r in mask_radii_deg]
|
||||
|
||||
# # Use pandas.cut to assign each source a bin index (0, 1, or 2)
|
||||
# catalog["flux_bin"] = pd.cut(catalog["Flux"], bins=flux_bins, labels=False)
|
||||
|
||||
flux_bins = [0, 125, 250, 2000, 20000, np.inf]
|
||||
catalog["flux_bin"] = pd.cut(catalog["Flux"], bins=flux_bins, labels=False)
|
||||
|
||||
bin_to_radius_deg = {
|
||||
0: 0.06,
|
||||
1: 0.15,
|
||||
2: 0.5,
|
||||
3: 0.9,
|
||||
4: 2.5,
|
||||
}
|
||||
|
||||
catalog["mask_radius_deg"] = catalog["flux_bin"].map(bin_to_radius_deg)
|
||||
|
||||
# manually add and change some sources
|
||||
# manual_additions = pd.DataFrame(
|
||||
# [
|
||||
# {"RAdeg": 279.9804336, "DEdeg": 5.0669542, "flux_bin": 3},
|
||||
# {"RAdeg": 266.5173685, "DEdeg": -29.1252321, "flux_bin": 3},
|
||||
# {
|
||||
# "RAdeg": 194.9350000,
|
||||
# "DEdeg": 27.9124722,
|
||||
# "flux_bin": 4,
|
||||
# }, # Coma Cluster, 2.5 degrees
|
||||
# {
|
||||
# "RAdeg": 187.6991667,
|
||||
# "DEdeg": 12.3852778,
|
||||
# "flux_bin": 4,
|
||||
# }, # Virgo cluster, 2.5 degrees
|
||||
# ]
|
||||
# )
|
||||
|
||||
# catalog = pd.concat([catalog, manual_additions], ignore_index=True)
|
||||
|
||||
# catalog.loc[catalog["SrcID"] == 1101, "flux_bin"] = 2
|
||||
|
||||
manual_additions = pd.DataFrame(
|
||||
[
|
||||
{
|
||||
"RAdeg": 279.9804336,
|
||||
"DEdeg": 5.0669542,
|
||||
"mask_radius_deg": 0.9,
|
||||
},
|
||||
{"RAdeg": 266.5173685, "DEdeg": -29.1252321, "mask_radius_deg": 0.9},
|
||||
{
|
||||
"RAdeg": 194.9350000,
|
||||
"DEdeg": 27.9124722,
|
||||
"mask_radius_deg": 1.17,
|
||||
}, # Coma, 70 arcmin radius
|
||||
{
|
||||
"RAdeg": 187.6991667,
|
||||
"DEdeg": 12.3852778,
|
||||
"mask_radius_deg": 2.5,
|
||||
}, # Virgo, 2.5 deg radius
|
||||
]
|
||||
)
|
||||
catalog = pd.concat([catalog, manual_additions], ignore_index=True)
|
||||
|
||||
catalog.loc[catalog["SrcID"] == 1101, "mask_radius_deg"] = 0.5 # e.g. override
|
||||
|
||||
mask_array = np.ones(npix, dtype=bool)
|
||||
|
||||
masked_pixels_set = set()
|
||||
|
||||
self.stdout.write("\nCreating a list of contaminated pixels...")
|
||||
|
||||
# process each source in the catalog
|
||||
for _, row in catalog.iterrows():
|
||||
|
||||
ra = row["RAdeg"]
|
||||
dec = row["DEdeg"]
|
||||
|
||||
src_coord = SkyCoord(ra, dec, unit="deg", frame="icrs")
|
||||
gal = src_coord.galactic
|
||||
|
||||
ra, dec = gal.l.deg, gal.b.deg
|
||||
|
||||
# flux_bin = row["flux_bin"] # 0, 1, or 2
|
||||
# # Get the corresponding mask radius (in radians) for this flux bin
|
||||
# radius = mask_radii[flux_bin]
|
||||
|
||||
# Convert (ra, dec) to HEALPix spherical coordinates
|
||||
theta = np.radians(90.0 - dec)
|
||||
phi = np.radians(ra)
|
||||
vec = hp.ang2vec(theta, phi)
|
||||
|
||||
# # Query all pixels within the given radius
|
||||
# # 'inclusive=True' makes sure pixels on the edge are included
|
||||
# pix_indices = hp.query_disc(nside, vec, radius, inclusive=True)
|
||||
|
||||
# read the explicit per-source radius in degrees, convert to radians:
|
||||
radius_deg = row["mask_radius_deg"]
|
||||
radius = np.radians(radius_deg)
|
||||
|
||||
# now query:
|
||||
pix_indices = hp.query_disc(nside, vec, radius, inclusive=True)
|
||||
|
||||
# Mark these pixels as bad (False) in our mask
|
||||
mask_array[pix_indices] = False
|
||||
# Add the pixel indices to our set of masked pixels
|
||||
masked_pixels_set.update(pix_indices)
|
||||
|
||||
# Convert the set of masked pixels to a sorted list.
|
||||
masked_pixels_list = sorted(list(masked_pixels_set))
|
||||
|
||||
# print("Number of masked pixels:", len(masked_pixels_list))
|
||||
|
||||
self.stdout.write("\nList ready, updating the database...")
|
||||
|
||||
if not masked_pixels_list:
|
||||
self.stdout.write("No pixels marked as contaminated, exiting.")
|
||||
return
|
||||
|
||||
total = len(masked_pixels_list)
|
||||
updated = 0
|
||||
self.stdout.write(f"\nUpdating contaminated flag in batches of {BATCH_SIZE}")
|
||||
|
||||
for chunk in batch(masked_pixels_list, BATCH_SIZE):
|
||||
with transaction.atomic():
|
||||
Pixel.objects.filter(hpid__in=chunk).update(contaminated=True)
|
||||
|
||||
updated += len(chunk)
|
||||
percentage = updated / total * 100
|
||||
|
||||
timestamp = datetime.now().strftime("%H:%M:%S")
|
||||
self.stdout.write(
|
||||
f"[{timestamp}] {updated}/{total} ({percentage:.1f}%) updated"
|
||||
)
|
||||
|
||||
self.stdout.write(f"\n Marked {updated} pixels as contaminated.")
|
67
models.py
67
models.py
@@ -4,46 +4,47 @@ from django.db import models
|
||||
from django.db.models import UniqueConstraint
|
||||
|
||||
|
||||
|
||||
|
||||
class Survey(models.Model):
|
||||
|
||||
number = models.IntegerField(unique=True)
|
||||
|
||||
# nside = models.IntegerField(
|
||||
# default=4096
|
||||
# )
|
||||
|
||||
def __str__(self):
|
||||
return f"Survey {self.number} of NSIDE {self.nside}"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Pixel(models.Model):
|
||||
|
||||
id = models.AutoField(primary_key=True)
|
||||
# id = models.AutoField(primary_key=True) # ~200 million pixels for a 4096 survey
|
||||
# no need to set explicitly
|
||||
# WILL ONLY HOLD 10 SURVEYS AS AN AUTOFIELD (IntegerField, ~2 billion limit)
|
||||
# BIGAUTOFIELD WILL BE REQUIRED FOR MORE!
|
||||
|
||||
survey = models.ForeignKey(
|
||||
Survey,
|
||||
on_delete=models.CASCADE,
|
||||
related_name='pixels',
|
||||
default=0
|
||||
)
|
||||
survey = models.PositiveSmallIntegerField()
|
||||
|
||||
hpid = models.IntegerField(db_index=True)
|
||||
hpid = models.IntegerField(db_index=True) # up to over 200 million
|
||||
|
||||
counts = models.IntegerField()
|
||||
counts = models.IntegerField() # f4, up to ~44k integer: 2 byte too small
|
||||
|
||||
exposure = models.FloatField()
|
||||
exposure = models.FloatField() # f4, up to ~13300 float
|
||||
|
||||
contaminated = models.BooleanField(default=False)
|
||||
|
||||
class Meta:
|
||||
constraints = [
|
||||
UniqueConstraint(fields=['survey', 'hpid'], name='unique_hpid_per_survey'),
|
||||
]
|
||||
|
||||
def __str__(self):
|
||||
return f"Pixel {self.id} (Survey {self.survey.number})"
|
||||
return f"Pixel {self.id} hpid {self.hpid} (Survey {self.survey.number})"
|
||||
|
||||
|
||||
class CatalogSource(models.Model):
|
||||
|
||||
srcid = models.SmallIntegerField(primary_key=True)
|
||||
|
||||
name = models.CharField(max_length=21)
|
||||
|
||||
ra_deg = models.FloatField()
|
||||
|
||||
dec_deg = models.FloatField()
|
||||
|
||||
pos_error = models.FloatField()
|
||||
|
||||
significance = models.FloatField()
|
||||
|
||||
flux = models.FloatField()
|
||||
|
||||
flux_error = models.FloatField()
|
||||
|
||||
catalog_name = models.CharField(max_length=28)
|
||||
|
||||
new_xray = models.BooleanField(default=False)
|
||||
|
||||
source_type = models.CharField(max_length=13)
|
||||
|
@@ -2,5 +2,6 @@ astropy
|
||||
numpy
|
||||
healpy
|
||||
scipy
|
||||
mpmath
|
||||
django
|
||||
djangorestframework
|
||||
|
@@ -1,8 +1,3 @@
|
||||
# uplim/serializers.py
|
||||
from rest_framework import serializers
|
||||
from uplim.models import Pixel
|
||||
|
||||
# class PixelSerializer(serializers.ModelSerializer):
|
||||
# class Meta:
|
||||
# model = Pixel
|
||||
# fields = ('hpid', 'counts', 'exposure', 'contaminated')
|
||||
|
8
urls.py
8
urls.py
@@ -1,10 +1,10 @@
|
||||
# uplim/urls.py
|
||||
|
||||
from django.urls import path
|
||||
from .views import PixelAggregateView, UpperLimitView #, PixelDetailView
|
||||
from .views import PixelAggregateView, UpperLimitView # , PixelDetailView
|
||||
|
||||
urlpatterns = [
|
||||
#path('pixel/<int:hpid>/', PixelDetailView.as_view(), name='pixel-detail'),
|
||||
path('pixel-aggregate/', PixelAggregateView.as_view(), name='pixel-aggregate'),
|
||||
path('upper-limit/', UpperLimitView.as_view(), name='upper-limit'),
|
||||
# path('pixel/<int:hpid>/', PixelDetailView.as_view(), name='pixel-detail'),
|
||||
path("pixel-aggregate/", PixelAggregateView.as_view(), name="pixel-aggregate"),
|
||||
path("upper-limit/", UpperLimitView.as_view(), name="upper-limit"),
|
||||
]
|
||||
|
483
views.py
483
views.py
@@ -4,20 +4,49 @@
|
||||
# search for pixels non-inclusively
|
||||
import healpy as hp
|
||||
import astropy.units as u
|
||||
from astropy.coordinates import SkyCoord
|
||||
|
||||
import numpy as np
|
||||
import scipy.special as sp
|
||||
|
||||
from astropy.coordinates import SkyCoord, Angle
|
||||
from astropy.stats import poisson_conf_interval
|
||||
|
||||
from django.db.models import Sum
|
||||
from collections import defaultdict
|
||||
|
||||
from django.db.models import (
|
||||
Max,
|
||||
Sum,
|
||||
F,
|
||||
IntegerField,
|
||||
BooleanField,
|
||||
ExpressionWrapper,
|
||||
Case,
|
||||
When,
|
||||
Value,
|
||||
)
|
||||
from django.db.models.functions import Cast
|
||||
from django.shortcuts import get_object_or_404
|
||||
from rest_framework.views import APIView
|
||||
from rest_framework.response import Response
|
||||
from rest_framework import status
|
||||
from uplim.models import Pixel, CatalogSource
|
||||
|
||||
from django.shortcuts import get_object_or_404
|
||||
# SANITIZE RESPONSE DATA BEFORE JSON CONVERSION FOR DEBUGGING NANS
|
||||
# now NaNs are converted to 'null' beforehand
|
||||
# ****************************************************************
|
||||
|
||||
from uplim.models import Pixel
|
||||
|
||||
def sanitize(obj):
|
||||
if isinstance(obj, dict):
|
||||
return {k: sanitize(v) for k, v in obj.items()}
|
||||
if isinstance(obj, (list, tuple)):
|
||||
return [sanitize(v) for v in obj]
|
||||
# handle numpy scalars
|
||||
if isinstance(obj, np.generic):
|
||||
v = obj.item()
|
||||
return None if (np.isnan(v) or np.isinf(v)) else v
|
||||
if isinstance(obj, float):
|
||||
return None if (np.isnan(obj) or np.isinf(obj)) else obj
|
||||
return obj
|
||||
|
||||
|
||||
# SURVEY PARAMETER PARSER
|
||||
@@ -35,10 +64,11 @@ def parse_survey_param(raw):
|
||||
return sorted(surveys)
|
||||
|
||||
|
||||
|
||||
# PIXEL VIEW (MOSTLY FOR TESTING)
|
||||
# add healpix indices into the output
|
||||
# **************************************************************
|
||||
|
||||
|
||||
class PixelAggregateView(APIView):
|
||||
|
||||
def get(self, request):
|
||||
@@ -52,7 +82,7 @@ class PixelAggregateView(APIView):
|
||||
if raw_pixel is None or raw_survey is None:
|
||||
return Response(
|
||||
{"detail": "Both `pixel` and `survey` parameters are required."},
|
||||
status=status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
|
||||
# FILTER THE INPUTS
|
||||
@@ -62,7 +92,7 @@ class PixelAggregateView(APIView):
|
||||
except ValueError:
|
||||
return Response(
|
||||
{"detail": "`pixel` must be an integer."},
|
||||
status=status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
|
||||
try:
|
||||
@@ -70,50 +100,33 @@ class PixelAggregateView(APIView):
|
||||
except ValueError:
|
||||
return Response(
|
||||
{"detail": "Malformed `survey`; use N, N,M or N-M formats."},
|
||||
status=status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
|
||||
# FILTER AND AGGREGATE
|
||||
# **************************************************************
|
||||
qs = Pixel.objects.filter(
|
||||
hpid=hpid,
|
||||
survey__number__in=survey_numbers
|
||||
)
|
||||
qs = Pixel.objects.filter(hpid=hpid, survey__in=survey_numbers)
|
||||
|
||||
if not qs.exists():
|
||||
# no matching pixel(s) → 404
|
||||
get_object_or_404(Pixel, hpid=hpid, survey__number__in=survey_numbers)
|
||||
get_object_or_404(Pixel, hpid=hpid, survey__in=survey_numbers)
|
||||
|
||||
result = qs.aggregate(
|
||||
aggregates = qs.aggregate(
|
||||
# pixel_hpid=hpid,
|
||||
# survey_number=survey_numbers,
|
||||
total_counts=Sum("counts"),
|
||||
total_exposure=Sum("exposure")
|
||||
total_exposure=Sum("exposure"),
|
||||
)
|
||||
|
||||
plusdata = {"pixel_hpid": hpid, "surveys": survey_numbers}
|
||||
|
||||
result = {**aggregates, **plusdata}
|
||||
|
||||
# RETURN THE SUMS
|
||||
# **************************************************************
|
||||
return Response(result, status=status.HTTP_200_OK)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# class PixelDetailView(APIView):
|
||||
# """
|
||||
# API endpoint that returns the pixel data (counts, exposure, rate)
|
||||
# for a given hpid.
|
||||
# """
|
||||
# def get(self, request, hpid):
|
||||
# # Get the survey using the survey_number field.
|
||||
# # survey = get_object_or_404(Survey, number=survey_number)
|
||||
|
||||
# # Get the pixel corresponding to the survey and hpid.
|
||||
# pixel = get_object_or_404(Pixel, hpid=hpid)
|
||||
|
||||
# # Serialize the pixel data to JSON.
|
||||
# serializer = PixelSerializer(pixel)
|
||||
# return Response(serializer.data, status=status.HTTP_200_OK)
|
||||
|
||||
|
||||
|
||||
# UPPER LIMIT COMPUTATION VIEW
|
||||
# **************************************************************
|
||||
|
||||
@@ -122,50 +135,37 @@ class UpperLimitView(APIView):
|
||||
"""
|
||||
Calculate confidence bounds based on aperture photometry using classic and bayesian methods
|
||||
"""
|
||||
|
||||
def get(self, request):
|
||||
|
||||
# GET PARAMETERS FROM THE REQUEST
|
||||
# **************************************************************
|
||||
|
||||
try:
|
||||
ra = float(request.query_params.get('ra'))
|
||||
dec = float(request.query_params.get('dec'))
|
||||
confidence_level = float(request.query_params.get('cl'))
|
||||
ra = float(request.query_params.get("ra"))
|
||||
dec = float(request.query_params.get("dec"))
|
||||
confidence_level = float(request.query_params.get("cl"))
|
||||
except (TypeError, ValueError):
|
||||
return Response(
|
||||
{"error": "Invalud parameters, provide RA, DEC, and CL"},
|
||||
status = status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
# ── NEW: pull & parse survey selection ──
|
||||
raw_survey = request.query_params.get('survey')
|
||||
# pull & parse survey selection
|
||||
raw_survey = request.query_params.get("survey")
|
||||
if raw_survey is None:
|
||||
return Response(
|
||||
{"error": "Missing required `survey` parameter (e.g. ?survey=1,3-5)"},
|
||||
status=status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
try:
|
||||
survey_numbers = parse_survey_param(raw_survey)
|
||||
except ValueError:
|
||||
return Response(
|
||||
{"error": "Malformed `survey`; use formats like 1, 2-5, or 1,3-4"},
|
||||
status=status.HTTP_400_BAD_REQUEST
|
||||
status=status.HTTP_400_BAD_REQUEST,
|
||||
)
|
||||
|
||||
# hp = HEALPix(
|
||||
# nside = 4096,
|
||||
# order = 'ring',
|
||||
# frame = 'icrs'
|
||||
# )
|
||||
|
||||
# CREATE SKYCOORD, CONVERT TO GALACTIC BECAUSE THE HEALPIX
|
||||
# MAP ITSELF WAS MADE IN GALACTIC COORDINATES
|
||||
# **************************************************************
|
||||
|
||||
src_coord = SkyCoord(
|
||||
ra, dec, unit = 'deg', frame = 'icrs'
|
||||
)
|
||||
gal = src_coord.galactic
|
||||
src_vec = hp.ang2vec(gal.l.deg, gal.b.deg, lonlat = True)
|
||||
map_radius_value = request.query_params.get("mr")
|
||||
|
||||
# DEFINE APERTURE AND ANNULUS RADII
|
||||
# **************************************************************
|
||||
@@ -173,63 +173,76 @@ class UpperLimitView(APIView):
|
||||
aperture_radius = 71 # radius of the aperture in arc seconds
|
||||
# HPD ~48 arcseconds
|
||||
# 90% ~100 arcseconds
|
||||
annulus_inner = 142 # 2 * aperture_radius
|
||||
annulus_outer = 284 # 4 * aperture_radius
|
||||
annulus_inner = 213 # 3 * aperture_radius
|
||||
annulus_outer = 355 # 5 * aperture_radius
|
||||
|
||||
# CREATE SKYCOORD, CONVERT TO GALACTIC BECAUSE THE HEALPIX
|
||||
# MAP ITSELF WAS MADE IN GALACTIC COORDINATES
|
||||
# **************************************************************
|
||||
|
||||
src_coord = SkyCoord(ra, dec, unit="deg", frame="icrs")
|
||||
gal = src_coord.galactic
|
||||
src_vec = hp.ang2vec(gal.l.deg, gal.b.deg, lonlat=True)
|
||||
|
||||
# FETCH PIXEL DATA DEFINED VIA HP.QUERY_DISC (INCLUSIVE=FALSE)
|
||||
# **************************************************************
|
||||
|
||||
source_pixel_list = hp.query_disc(
|
||||
nside = 4096,
|
||||
vec = src_vec,
|
||||
inclusive = False,
|
||||
nest = False,
|
||||
radius = (aperture_radius * u.arcsecond).to(u.radian).value
|
||||
nside=4096,
|
||||
vec=src_vec,
|
||||
inclusive=False,
|
||||
nest=False,
|
||||
radius=(aperture_radius * u.arcsecond).to(u.radian).value,
|
||||
)
|
||||
|
||||
inner_pixel_list = hp.query_disc(
|
||||
nside = 4096,
|
||||
vec = src_vec,
|
||||
inclusive = False,
|
||||
nest = False,
|
||||
radius = (annulus_inner * u.arcsecond).to(u.radian).value
|
||||
nside=4096,
|
||||
vec=src_vec,
|
||||
inclusive=False,
|
||||
nest=False,
|
||||
radius=(annulus_inner * u.arcsecond).to(u.radian).value,
|
||||
)
|
||||
|
||||
outer_pixel_list = hp.query_disc(
|
||||
nside = 4096,
|
||||
vec = src_vec,
|
||||
inclusive = False,
|
||||
nest = False,
|
||||
radius = (annulus_outer * u.arcsecond).to(u.radian).value
|
||||
nside=4096,
|
||||
vec=src_vec,
|
||||
inclusive=False,
|
||||
nest=False,
|
||||
radius=(annulus_outer * u.arcsecond).to(u.radian).value,
|
||||
)
|
||||
|
||||
|
||||
annulus_pixel_list = [
|
||||
item for item in outer_pixel_list if item not in inner_pixel_list
|
||||
]
|
||||
|
||||
|
||||
source_pixels = Pixel.objects.filter(
|
||||
hpid__in = source_pixel_list,
|
||||
survey__number__in = survey_numbers
|
||||
hpid__in=source_pixel_list, survey__in=survey_numbers
|
||||
)
|
||||
|
||||
annulus_pixels = Pixel.objects.filter(
|
||||
hpid__in = annulus_pixel_list,
|
||||
survey__number__in = survey_numbers
|
||||
hpid__in=annulus_pixel_list, survey__in=survey_numbers
|
||||
)
|
||||
|
||||
if not source_pixels.exists() and not annulus_pixels.exists():
|
||||
return Response(
|
||||
{"detail": "No pixel data for the given survey selection."},
|
||||
status=status.HTTP_404_NOT_FOUND
|
||||
# check contamination
|
||||
contamination = (
|
||||
source_pixels.filter(contaminated=True).exists()
|
||||
or annulus_pixels.filter(contaminated=True).exists()
|
||||
)
|
||||
|
||||
# exclude contaminated pixels from the background and source regions
|
||||
annulus_pixels = annulus_pixels.exclude(contaminated=True)
|
||||
# source_pixels = source_pixels.exclude(contaminated=True)
|
||||
|
||||
status_int = 0
|
||||
error_message = ""
|
||||
|
||||
if not source_pixels.exists() or not annulus_pixels.exists():
|
||||
status_int = 1 # status 1 if there are no source or bg pixels
|
||||
|
||||
# COMPUTE COUNTS, BACKGROUND ESTIMATE, EXPOSURE
|
||||
# **************************************************************
|
||||
|
||||
try:
|
||||
# summing counts across all surveys
|
||||
N = sum(obj.counts for obj in source_pixels)
|
||||
|
||||
Nnpix = len(source_pixels)
|
||||
@@ -240,50 +253,83 @@ class UpperLimitView(APIView):
|
||||
|
||||
B = Bcounts / Bnpix * Nnpix
|
||||
|
||||
tsum = sum(obj.exposure for obj in source_pixels)
|
||||
# create a dict of exposures keyed by survey
|
||||
t_by_survey = defaultdict(list)
|
||||
|
||||
t = tsum / Nnpix
|
||||
for pixel in source_pixels:
|
||||
t_by_survey[pixel.survey].append(pixel.exposure)
|
||||
|
||||
# create and populate a list of average exposures per survey
|
||||
survey_averages = []
|
||||
|
||||
for survey_id, exposures in t_by_survey.items():
|
||||
average_exposure = sum(exposures) / len(exposures)
|
||||
survey_averages.append(average_exposure)
|
||||
|
||||
# sum them up across surveys
|
||||
t = sum(survey_averages)
|
||||
|
||||
# CONSTANTS
|
||||
# **************************************************************
|
||||
|
||||
EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90
|
||||
ECF = 4e-11 # energy conversion factor
|
||||
|
||||
# EEF = .9 # eclosed energy fraction, .5 for hpd, .9 for w90
|
||||
# ECF = 4e-11 # energy conversion factor
|
||||
|
||||
EEF = 0.80091 # use values from the paper
|
||||
ECF = 3.3423184e-11
|
||||
|
||||
# BAYESIAN IMPLEMENTATION VIA POISSON_CONF_INTERVAL
|
||||
# **************************************************************
|
||||
|
||||
# double sided interval
|
||||
low, high = poisson_conf_interval(
|
||||
n = N,
|
||||
background = B,
|
||||
interval = 'kraft-burrows-nousek',
|
||||
confidence_level=confidence_level
|
||||
n=N,
|
||||
background=B,
|
||||
interval="kraft-burrows-nousek",
|
||||
confidence_level=confidence_level,
|
||||
)
|
||||
|
||||
bayesian_count_ul = high
|
||||
bayesian_count_ll = low
|
||||
# because poisson_conf_interval returns lists
|
||||
bayesian_count_ul = high[0]
|
||||
bayesian_count_ll = low[0]
|
||||
|
||||
bayesian_count_UL = (
|
||||
sp.gammaincinv(
|
||||
N + 1,
|
||||
confidence_level * sp.gammaincc(N + 1, B) + sp.gammainc(N + 1, B),
|
||||
)
|
||||
- B
|
||||
)
|
||||
|
||||
bayesian_rate_ul = bayesian_count_ul / t / EEF # count rate limits
|
||||
bayesian_rate_ll = bayesian_count_ll / t / EEF
|
||||
bayesian_rate_UL = bayesian_count_UL / t / EEF
|
||||
|
||||
bayesian_flux_ul = bayesian_rate_ul * ECF # flux limits
|
||||
bayesian_flux_ll = bayesian_rate_ll * ECF
|
||||
bayesian_flux_UL = bayesian_rate_UL * ECF
|
||||
|
||||
# CLASSICAL IMPLEMENTATION VIA GAMMAINCCINV
|
||||
# ****************************************************************
|
||||
|
||||
classic_count_ul = sp.gammainccinv(N+1, 1 - confidence_level) - B
|
||||
classic_count_ll = sp.gammainccinv(N, confidence_level) - B
|
||||
# confidence level for the double sided interval
|
||||
cl2 = (1 + confidence_level) / 2
|
||||
# double sided interval
|
||||
classic_count_ul = sp.gammainccinv(N + 1, 1 - cl2) - B
|
||||
classic_count_ll = sp.gammainccinv(N, cl2) - B
|
||||
# one sided interval
|
||||
classic_count_UL = sp.gammainccinv(N + 1, 1 - confidence_level) - B
|
||||
|
||||
classic_count_ll = max(classic_count_ll, 0)
|
||||
if not np.isfinite(classic_count_ll) or classic_count_ll < 0:
|
||||
classic_count_ll = 0.0
|
||||
|
||||
classic_rate_ul = classic_count_ul / t / EEF # count rate limits
|
||||
classic_rate_ll = classic_count_ll / t / EEF
|
||||
classic_rate_UL = classic_count_UL / t / EEF
|
||||
|
||||
classic_flux_ul = classic_rate_ul * ECF # flux limits
|
||||
classic_flux_ll = classic_rate_ll * ECF
|
||||
classic_flux_UL = classic_rate_UL * ECF
|
||||
|
||||
# FLUX ESTIMATION
|
||||
# ****************************************************************
|
||||
@@ -291,37 +337,224 @@ class UpperLimitView(APIView):
|
||||
S = N - B # counts as simply counts within aperture
|
||||
# with the background estimate subtracted
|
||||
|
||||
CR = S / t / EEF # count rate
|
||||
CR = S / t / EEF # source count rate
|
||||
|
||||
BR = B / t # background rate within aperture
|
||||
|
||||
FL = CR * ECF # conversion to flux
|
||||
|
||||
Flux = max(FL, 0) # flux cannot be lower than zero
|
||||
|
||||
# NORMALIZED BACKGROUND RATE
|
||||
# ****************************************************************
|
||||
# in units of ct/s/keV/arcmin^2
|
||||
|
||||
return Response({
|
||||
sr_to_arcmin2 = (180 / np.pi * 60) ** 2
|
||||
|
||||
'ClassicUpperLimit' : classic_count_ul,
|
||||
'ClassicLowerLimit' : classic_count_ll,
|
||||
'ClassicCountRateUpperLimit' : classic_rate_ul,
|
||||
'ClassicCountRateLowerLimit' : classic_rate_ll,
|
||||
'ClassicFluxUpperLimit' : classic_flux_ul,
|
||||
'ClassicFluxLowerLimit' : classic_flux_ll,
|
||||
pix_area = (
|
||||
hp.nside2pixarea(nside=4096) * sr_to_arcmin2
|
||||
) # nside2pixarea yields area in sr
|
||||
|
||||
'BayesianUpperLimit' : bayesian_count_ul,
|
||||
'BayesianLowerLimit' : bayesian_count_ll,
|
||||
'BayesianCountRateUpperLimit' : bayesian_rate_ul,
|
||||
'BayesianCountRateLowerLimit' : bayesian_rate_ll,
|
||||
'BayesianFluxUpperLimit' : bayesian_flux_ul,
|
||||
'BayesianFluxLowerLimit' : bayesian_flux_ll,
|
||||
bg_area = pix_area * Bnpix # get total bg region area
|
||||
|
||||
'FluxEstimate' : Flux,
|
||||
en_range = 12 - 4
|
||||
|
||||
# 'N' : N,
|
||||
# 'Nnpix' : Nnpix,
|
||||
# 'Bcounts' : Bcounts,
|
||||
# 'Bnpix' : Bnpix,
|
||||
# 'B' : B,
|
||||
# 'tsum' : tsum,
|
||||
# 't' : t
|
||||
NBR = Bcounts / t / en_range / bg_area
|
||||
|
||||
}, status=status.HTTP_200_OK)
|
||||
# handle exceptions: write error text to the response
|
||||
# zero out all math results
|
||||
except Exception as e:
|
||||
|
||||
error_message = str(e)
|
||||
|
||||
N = Nnpix = Bcounts = Bnpix = B = t = S = CR = BR = 0.0
|
||||
Flux = 0.0
|
||||
classic_count_ul = classic_count_ll = classic_count_UL = 0.0
|
||||
classic_rate_ul = classic_rate_ll = classic_rate_UL = 0.0
|
||||
classic_flux_ul = classic_flux_ll = classic_flux_UL = 0.0
|
||||
bayesian_count_ul = bayesian_count_ll = bayesian_count_UL = 0.0
|
||||
bayesian_rate_ul = bayesian_rate_ll = bayesian_rate_UL = 0.0
|
||||
bayesian_flux_ul = bayesian_flux_ll = bayesian_flux_UL = 0.0
|
||||
|
||||
# NEARBY SOURCES CHECK
|
||||
# ****************************************************************
|
||||
|
||||
# if map_radius == 0:
|
||||
# radius_as = 5 * aperture_radius
|
||||
# else:
|
||||
# radius_as = map_radius * 2
|
||||
|
||||
radius_deg = 3 # radius_as / 3600
|
||||
|
||||
dec_min = max(dec - radius_deg, -90)
|
||||
dec_max = min(dec + radius_deg, 90)
|
||||
|
||||
# cheap belt query
|
||||
belt_sources = CatalogSource.objects.filter(
|
||||
dec_deg__gte=dec_min, dec_deg__lte=dec_max
|
||||
)
|
||||
|
||||
center_coord = SkyCoord(ra, dec, unit="deg")
|
||||
|
||||
nearby_sources = []
|
||||
|
||||
radius_map = {0: 0.06, 125: 0.15, 250: 0.5, 2000: 0.9, 20000: 2.5}
|
||||
|
||||
sorted_bounds = sorted(radius_map.keys())
|
||||
|
||||
# refine belt to circular region using astropy separation
|
||||
for catsrc in belt_sources:
|
||||
catsrc_coord = SkyCoord(catsrc.ra_deg, catsrc.dec_deg, unit="deg")
|
||||
separation = center_coord.separation(catsrc_coord)
|
||||
if separation.deg > radius_deg:
|
||||
continue
|
||||
f = catsrc.flux or 0.0
|
||||
for lb in reversed(sorted_bounds):
|
||||
if f >= lb:
|
||||
mask_radius = radius_map[lb] * 3600
|
||||
break
|
||||
|
||||
nearby_sources.append(
|
||||
{
|
||||
"srcid": catsrc.srcid,
|
||||
"name": catsrc.name,
|
||||
"ra_deg": catsrc.ra_deg,
|
||||
"dec_deg": catsrc.dec_deg,
|
||||
"pos_error": catsrc.pos_error,
|
||||
"significance": catsrc.significance,
|
||||
"flux": catsrc.flux,
|
||||
"flux_error": catsrc.flux_error,
|
||||
"catalog_name": catsrc.catalog_name,
|
||||
"new_xray": catsrc.new_xray,
|
||||
"source_type": catsrc.source_type,
|
||||
"mask_radius_as": mask_radius,
|
||||
"separation_as": separation.arcsecond,
|
||||
}
|
||||
)
|
||||
nearby_sources.sort(key=lambda src: src["separation_as"])
|
||||
# REGION IMAGE SERVING
|
||||
# ****************************************************************
|
||||
|
||||
# default value if not specified in the query
|
||||
# get hpids within a circle of radius sqrt(2) * outer annulus radius
|
||||
if map_radius_value is None:
|
||||
map_radius = annulus_outer * np.sqrt(2)
|
||||
else:
|
||||
map_radius = float(map_radius_value)
|
||||
|
||||
map_pixel_list = hp.query_disc(
|
||||
nside=4096,
|
||||
vec=src_vec,
|
||||
inclusive=False,
|
||||
nest=False,
|
||||
radius=(map_radius * u.arcsecond).to(u.radian).value,
|
||||
)
|
||||
|
||||
# fetch those pixels for the requested surveys
|
||||
# summing counts and sorting by hpid
|
||||
|
||||
map_pixels_qs = (
|
||||
Pixel.objects.filter(hpid__in=map_pixel_list, survey__in=survey_numbers)
|
||||
.values("hpid")
|
||||
.annotate(counts=Sum("counts"))
|
||||
.order_by("hpid")
|
||||
)
|
||||
|
||||
# map_pixels_qs = (
|
||||
# Pixel.objects.filter(hpid__in=map_pixel_list, survey__in=survey_numbers)
|
||||
# .values("hpid")
|
||||
# .annotate(
|
||||
# total_counts=Sum("counts"),
|
||||
# max_contaminated_int=Max(Cast("contaminated", IntegerField())),
|
||||
# )
|
||||
# .annotate(
|
||||
# contaminated=Case(
|
||||
# When(max_contaminated_int=1, then=Value(True)),
|
||||
# default=Value(False),
|
||||
# output_field=BooleanField(),
|
||||
# )
|
||||
# )
|
||||
# .order_by("hpid")
|
||||
# )
|
||||
|
||||
# turn the queryset to a list
|
||||
map_pixels_list = list(map_pixels_qs)
|
||||
|
||||
# get lists of healpix indices and count values
|
||||
map_healpix_list = [d["hpid"] for d in map_pixels_list]
|
||||
map_counts_list = [d["counts"] for d in map_pixels_list]
|
||||
# map_contaminated_list = [d["contaminated"] for d in map_pixels_list]
|
||||
|
||||
# cont_dict = dict(
|
||||
# Pixel.objects.filter(hpid__in=map_healpix_list, survey__in=survey_numbers)
|
||||
# .values_list("hpid", "contaminated")
|
||||
# .distinct()
|
||||
# )
|
||||
|
||||
# map_contaminated_list = [cont_dict[h] for h in map_healpix_list]
|
||||
|
||||
# set map nside
|
||||
map_nside = 4096
|
||||
|
||||
# set map order
|
||||
map_order = "ring"
|
||||
|
||||
# assemble the result dict
|
||||
map_dict = {
|
||||
"healpix": map_healpix_list,
|
||||
"counts": map_counts_list,
|
||||
# "contaminated": map_contaminated_list,
|
||||
"nside": map_nside,
|
||||
"order": map_order,
|
||||
"radius_as": map_radius,
|
||||
}
|
||||
|
||||
# RESULT JSON
|
||||
# ****************************************************************
|
||||
|
||||
result = {
|
||||
"Status": status_int,
|
||||
# 0 OK
|
||||
# 1 either source or bg pixels missing
|
||||
"ErrorMessage": error_message,
|
||||
# frequentist limits
|
||||
"ClassicUpperLimit": classic_count_ul,
|
||||
"ClassicLowerLimit": classic_count_ll,
|
||||
"ClassicOneSideUL": classic_count_UL,
|
||||
"ClassicCountRateUpperLimit": classic_rate_ul,
|
||||
"ClassicCountRateLowerLimit": classic_rate_ll,
|
||||
"ClassicCountRateOneSideUL": classic_rate_UL,
|
||||
"ClassicFluxUpperLimit": classic_flux_ul,
|
||||
"ClassicFluxLowerLimit": classic_flux_ll,
|
||||
"ClassicFluxOneSideUL": classic_flux_UL,
|
||||
# bayesian limits
|
||||
"BayesianUpperLimit": bayesian_count_ul,
|
||||
"BayesianLowerLimit": bayesian_count_ll,
|
||||
"BayesianOneSideUL": bayesian_count_UL,
|
||||
"BayesianCountRateUpperLimit": bayesian_rate_ul,
|
||||
"BayesianCountRateLowerLimit": bayesian_rate_ll,
|
||||
"BayesianCountRateOneSideUL": bayesian_rate_UL,
|
||||
"BayesianFluxUpperLimit": bayesian_flux_ul,
|
||||
"BayesianFluxLowerLimit": bayesian_flux_ll,
|
||||
"BayesianFluxOneSideUL": bayesian_flux_UL,
|
||||
# flux 'center value' estimate
|
||||
"FluxEstimate": Flux,
|
||||
# raw data
|
||||
"ApertureCounts": N,
|
||||
"ApertureBackgroundCounts": B,
|
||||
"SourceCounts": S,
|
||||
"Exposure": t,
|
||||
# count rates
|
||||
"SourceRate": CR,
|
||||
"BackgroundRate": BR,
|
||||
"NormalizedBackgroundRate": NBR, # ct/s/keV/arcmin2
|
||||
# contamination
|
||||
"Contamination": contamination,
|
||||
"NearbySources": nearby_sources,
|
||||
# count map for the frontend image
|
||||
"CountMap": map_dict,
|
||||
}
|
||||
|
||||
clean = sanitize(result) # calling sanitize() to convert NaN to null
|
||||
|
||||
return Response(clean, status=status.HTTP_200_OK)
|
||||
|
Reference in New Issue
Block a user