found error in the estimation of the energy index for energy interpolation; added script to estimate likelihood for specified location
This commit is contained in:
101
lkl_solver.py
Normal file
101
lkl_solver.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import numpy as np
|
||||
from astropy.io import fits
|
||||
import matplotlib.pyplot as plt
|
||||
import pickle
|
||||
from astropy.wcs import WCS
|
||||
import tqdm
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from chan_psf import solve_for_locations, solve_for_locations_eintp, solve_for_rates
|
||||
|
||||
psfe = np.array([1.8, 1.9, 3.0, 4.0, 6.0, 7.0, 8.0, 9.0])
|
||||
|
||||
def prepare_psf(evt):
|
||||
"""
|
||||
find all unique psf for observation and load in single 3d data cuve
|
||||
return data cube with events slices indexes
|
||||
"""
|
||||
u, ui = np.unique(evt["psf_cube"], return_inverse=True)
|
||||
data = np.array([np.load(p[3:])[:, ::-1,::-1].copy() for p in u])
|
||||
return data, ui
|
||||
|
||||
def select_xychunksize(wcs, halfpsfsize=36./3600.):
|
||||
"""
|
||||
get wcs and find wcs pixel size of psf reach
|
||||
"""
|
||||
sizex = int(abs(halfpsfsize/wcs.wcs.cdelt[1])) + 2
|
||||
sizey = int(abs(halfpsfsize/wcs.wcs.cdelt[0])) + 2
|
||||
return sizex, sizey
|
||||
|
||||
def read_wcs(h):
|
||||
"""
|
||||
read events wcs header
|
||||
"""
|
||||
w = WCS(naxis=2)
|
||||
w.wcs.ctype = [h["TCTYP11"], h["TCTYP12"]]
|
||||
w.wcs.crval = [h["TCRVL11"], h["TCRVL12"]]
|
||||
w.wcs.cdelt = [h["TCDLT11"], h["TCDLT12"]]
|
||||
w.wcs.crpix = [h["TCRPX11"], h["TCRPX12"]]
|
||||
w = WCS(w.to_header())
|
||||
return w
|
||||
|
||||
|
||||
def create_neighboring_blocks(x, y, sizex, sizey):
|
||||
"""
|
||||
schematically all sky is splitted on squares, which are approximatelly ~ 10 times greater then the psf
|
||||
events for corresponding square are joined :: squer + diluttaion of psf reach
|
||||
|
||||
coordinate system with events and all required coefficiets are fed to psf solver
|
||||
current psf size is 25*0.5 arcsec (with up to \sqrt(2) factor in case of worst rolls -> 36''
|
||||
|
||||
"""
|
||||
"""
|
||||
event list already contains x and y for each event
|
||||
"""
|
||||
iix = (x//sizex + 0.5).astype(int)
|
||||
iiy = (y//sizey + 0.5).astype(int)
|
||||
isx, isy = np.mgrid[-1:2:1, -1:2:1]
|
||||
oidx = np.repeat(np.arange(x.size), 9)
|
||||
xyu, iixy, xyc = np.unique(np.array([np.repeat(iix, 9) + np.tile(isx.ravel(), x.size),
|
||||
np.repeat(iiy, 9)+ np.tile(isy.ravel(), x.size)]), axis=1, return_counts=True, return_inverse=True)
|
||||
|
||||
sord = np.argsort(iixy)
|
||||
return oidx[sord], xyu, xyc
|
||||
|
||||
|
||||
def lkls_for_rates(evt, expv, wcs, srcx, srcy, rates):
|
||||
sizex, sizey = select_xychunksize(wcs)
|
||||
x, y = evt["x"].astype(float), evt["y"].astype(float)
|
||||
mask = np.logical_and.reduce([x > srcx - sizex//2, y > srcy - sizey//2, x < srcx + sizex//2, y < srcy + sizey//2], axis=0)
|
||||
print("mask sum", srcx, srcy, mask.sum())
|
||||
eloc = evt[mask]
|
||||
pickle.dump(eloc, open("eloc.pkl", "wb"))
|
||||
psfdata, ui = prepare_psf(eloc)
|
||||
xe, ye = np.copy(x[mask]), np.copy(y[mask])
|
||||
eidx = np.maximum(np.searchsorted(psfe*1e3, eloc["ENERGY"]) - 1, 0)
|
||||
ee = np.maximum((eloc["ENERGY"]/1000. - psfe[eidx])/(psfe[eidx + 1] - psfe[eidx]), 0.).astype(float) + eidx
|
||||
pk = np.copy(eloc["src_spec"]/eloc["bkg_spec"]).astype(float)
|
||||
roll = np.copy(np.deg2rad(eloc["roll_pnt"])).astype(float)
|
||||
#"OOOOOOOdddO", &psfi, &eidx, &x, &y, &roll, &pk, &rates, &xc, &yc, &eloc, &smat
|
||||
# O O O O O O O d d d O"
|
||||
print(ui, ee, xe, ye, roll, pk)
|
||||
lkls = solve_for_rates(ui, ee, xe, ye, roll, pk, rates, srcx, srcy, expv, psfdata)
|
||||
return lkls
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
p1 = fits.open("test.fits")
|
||||
ewcs = read_wcs(p1[1].header)
|
||||
wcs = WCS(fits.getheader("eR_spec_asp_0.fits.gz", 0))
|
||||
xc, yc = 4290, 4147
|
||||
xc, yc = 4643, 4223.7
|
||||
#xc, yc = 4147,4290
|
||||
xc, yc = ewcs.all_world2pix(wcs.all_pix2world([[xc, yc],], 0), 0).T
|
||||
print(xc, yc)
|
||||
eloc = 0.025 #0.0283
|
||||
#rates = np.array([4.2/eloc,]) #np.logspace(-0.5, 0.5, 129)*4.2/eloc
|
||||
rates = np.logspace(-0.5, 0.5, 129)*1352/eloc #*4.2/eloc
|
||||
lkls = lkls_for_rates(p1[1].data, eloc, ewcs, xc, yc, rates)
|
||||
plt.plot(rates, lkls)
|
||||
plt.axvline(rates[64])
|
||||
plt.show()
|
||||
|
Reference in New Issue
Block a user