lkl_srcdet/chan_psf.c
2025-03-04 11:54:21 +03:00

209 lines
8.8 KiB
C

#include "numpy/arrayobject.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <rate_solvers.h>
#ifndef MATH
#define MATh
#include <math.h>
#endif
double * psfvalfromptr(double * psfdata, npy_intp * dims, int k, int xi, int yi)
{
//printf("check didx %d %.2e\n", ((dims[1]*eidx + k)*dims[2] + xi)*dims[3] + yi, *( psfdata + ((dims[1]*eidx + k)*dims[2] + xi)*dims[3] + yi));
return psfdata + (k*dims[1] + xi)*dims[2] + yi;
};
static PyObject * solve_for_locations(PyObject *self, PyObject *args)
{
//xc, yc --- wcs locations, events has coordinates in the same locations, and psf have the same grid as well
// the only additional parameter to events are pk scale (rate scale in respect to psf) and rotation angle
PyArrayObject *psfi, *x, *y, *roll, *pk, *xc, *yc, *smat, *emap;
int loc, ctr;
double x1, y1, dx, dy;
if (!PyArg_ParseTuple(args, "OOOOOOOOO", &psfi, &x, &y, &roll, &pk, &xc, &yc, &emap, &smat)) return NULL;
// -------------------------- ===============
// those are events properties those for sky smat it array for psf matrices
npy_intp snew = {xc->dimensions[0]};
PyArrayObject * cmap = PyArray_SimpleNew(1, &snew, NPY_DOUBLE);
PyArrayObject * pmap = PyArray_SimpleNew(1, &snew, NPY_DOUBLE);
double * cmapd = (double*) cmap->data;
double * pmapd = (double*) pmap->data;
double * smatd = (double*) smat->data;
//printf("smat 1d %d xc size %d x size %d\n", smat->dimensions[0], xc->dimensions[0], x->dimensions[0]);
double *ca = (double*)malloc(sizeof(double)*x->dimensions[0]);
double *sa = (double*)malloc(sizeof(double)*x->dimensions[0]);
double* nparrptr = (double*) roll->data;
for (ctr=0; ctr < x->dimensions[0]; ctr++)
{
ca[ctr] = cos(nparrptr[ctr]);
sa[ctr] = sin(nparrptr[ctr]);
};
double * bw = (double*)malloc(sizeof(double)*psfi->dimensions[0]); //not more then thet will be used for each location
Py_BEGIN_ALLOW_THREADS;
double inpixdx, inpixdy;
double * pkd = (double*) pk->data;
long * k = (long*)psfi->data;
double* xptr = (double*) x->data;
double* yptr = (double*) y->data;
double *xcptr = (double*) xc->data;
double *ycptr = (double*) yc->data;
long ctr, msum=0;
double lkl;
double pval, eloc, p2, p3;
int idx1d, idx2d;
/*
pval = *psfvalfromptr(smatd, smat->dimensions, 1744, 50, 50);
printf("1744 50 50 %f\n", pval);
pval = *psfvalfromptr(smatd, smat->dimensions, 1744, 40, 48);
printf("1744 40 48 %f\n", pval);
pval = *psfvalfromptr(smatd, smat->dimensions, 1744, 20, 52);
printf("1744 20 52 %f\n", pval);
printf("bwd %f %f %f\n", xptr[0], xptr[10], xptr[20]);
printf("xptr %f %f %f\n",xcptr[0], xcptr[10], xcptr[20]);
printf("dimension %d\n", xc->dimensions[0]);
*/
for (loc=0; loc < xc->dimensions[0]; loc++) // loop over sky locations
{
msum = 0;
for (ctr=0; ctr < psfi->dimensions[0]; ctr++) // for each sky location loop over all provided events
{
x1 = (xcptr[loc] - xptr[ctr]);
y1 = (ycptr[loc] - yptr[ctr]);
//rotate by the event roll angle, dx dy centered at the psf center (central pixel of 101x101 map)
dx = x1*ca[ctr] - y1*sa[ctr]; //+ 50;
dy = y1*ca[ctr] + x1*sa[ctr]; // + 50.;
// temporary hardcode psf shape is 101x101
//current psf shape is 101:
if ((dx > -50) && (dx < 50))
{
if ((dy > -50) && (dy < 50))
{
idx1d = (int)((dx + 50.5)); // float dx from -0.5 to 0.5 should fell in the 50-th pixel
idx2d = (int)((dy + 50.5));
//printf("dx dy %f %f\n", dx, dy);
pval = * psfvalfromptr(smatd, smat->dimensions, *(k + ctr), idx1d, idx2d);
//naive interpolation block
//-------------------------------------------------------------------------------------------------------
inpixdx = dx - (idx1d - 50);
inpixdy = dy - (idx2d - 50);
if (inpixdx > 0.)
{
p2 = * psfvalfromptr(smatd, smat->dimensions, *(k + ctr), idx1d + 1, idx2d);
if (inpixdy > 0.)
{
p3 = * psfvalfromptr(smatd, smat->dimensions, * (k + ctr), idx1d, idx2d + 1);
}else{
inpixdy = -inpixdy;
p3 = * psfvalfromptr(smatd, smat->dimensions, * (k + ctr), idx1d, idx2d - 1);
}
}else{
p2 = * psfvalfromptr(smatd, smat->dimensions, * (k + ctr), idx1d - 1, idx2d);
inpixdx = -inpixdx;
if (inpixdy > 0.)
{
p3 = * psfvalfromptr(smatd, smat->dimensions, * (k + ctr), idx1d, idx2d + 1);
}else{
inpixdy = -inpixdy;
p3 = * psfvalfromptr(smatd, smat->dimensions, * (k + ctr), idx1d, idx2d - 1);
}
}
//printf("pval %f %f %f %f %f %d %d %d\n", pval, p2, p3, inpixdx, inpixdy, idx1d, idx2d, k[ctr]);
pval = (pval + inpixdx*(p2 - pval) + inpixdy*(p3 - pval))* (*(pkd + ctr));
// interpolation up to here
//-------------------------------------------------------------------------------------------------------
//pval = pval * (*(pkd + ctr));
if (pval > 1e-10)
{
bw[msum] = pval;
//printf("%d %d %d %f %f %f %f %f\n", k[ctr], idx1d, idx2d, inpixdx, inpixdy, dx, dy, pval);
//printf("%d %d %d %f %f %f %f %f\n", k[ctr], idx1d, idx2d, xptr[ctr], yptr[ctr], xcptr[loc], ycptr[loc], pval);
msum += 1;
};
};
};
};
if (msum > 0)
{
eloc = (double) *((double*) emap->data + loc);
pval = get_phc_solution_pkr((double) msum, eloc, bw, msum);
*(cmapd + loc) = pval*eloc;
lkl = 0.;
for (ctr=0; ctr < msum; ctr ++)
{
lkl = lkl + log(pval*bw[ctr] + 1.);
}
//printf("loc %d %d %f %f %f %f\n", loc, msum, bw[0], eloc, pval, lkl);
*(pmapd + loc) = lkl; //log(lkl); //get_lkl_pkr(pval, bw, msum);
/*
lkl = 0;
for (ctr=0; ctr < msum; ctr ++)
{
lkl = lkl + bw[ctr];
}
*(pmapd + loc) = lkl;
printf("%d %d %f\n", msum, loc, pmapd[loc]);
*/
}else{
*(cmapd + loc) = 0.;
*(pmapd + loc) = 0.;
};
};
//printf("loop done\n");
Py_END_ALLOW_THREADS;
free(bw);
PyObject *res = Py_BuildValue("OO", cmap, pmap);
Py_DECREF(cmap);
Py_DECREF(pmap);
return res;
}
static PyMethodDef PSFMethods[] = {
{"solve_for_locations", solve_for_locations, METH_VARARGS, "get coordinates within pixel based on its coordinates"},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef psf_c_module = {
PyModuleDef_HEAD_INIT,
"chan_psf",
NULL,
-1,
PSFMethods
};
PyMODINIT_FUNC PyInit_chan_psf(void)
{
assert(! PyErr_Occurred());
if (PyErr_Occurred()) {return NULL;}
import_array();
return PyModule_Create(&psf_c_module);
};