1
0
forked from erosita/uds
coma/scripts/makecds.py
2024-05-15 16:21:15 +03:00

684 lines
27 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import cdspyreadme
from astropy.io import fits
from astropy.table import Table
def make_euds_cds(infile1=None,outfile1=None,infile2=None,outfile2=None,fluxlim=None):
print("Reading {}".format(infile1))
#########################
""" Read eUDS catalog """
#########################
tablemaker = cdspyreadme.CDSTablesMaker()
r = Table.read(infile1)
tab=Table([
r['ID_SRC'], # 0
r['NAME'], # 1
r['RA'], # 2
r['DEC'], # 3
r['RADEC_ERR'], # 4 Positional error (68% confidence)
r['EXT'], # 5 Source extent
r['EXT_ERR'], # 6 Extent uncertainty
r['EXT_LIKE'], # 7
r['DET_LIKE'], # 8
r['ML_RATE'], # 9
r['ML_RATE_ERR'], # 10
r['ML_CTS'], # 11
r['ML_CTS_ERR'], # 12
r['ML_FLUX'], # 13
r['ML_FLUX_ERR'], # 14
r['ML_EXP'], # 15
r['ML_BKG'], # 16
r['DR12_IAU_NAME'] , # 17 4XMM J021738.8-051257
r['DET_LIKE_1'] , # 18
r['ML_RATE_1'] , # 19
r['ML_RATE_ERR_1'] , # 20
r['ML_CTS_1'] , # 21
r['ML_CTS_ERR_1'] , # 22
r['ML_FLUX_1'] , # 23
r['ML_FLUX_ERR_1'] , # 24
r['ML_EXP_1'] , # 25
r['ML_BKG_1'] , # 26
r['DET_LIKE_2'] , # 27
r['ML_RATE_2'] , # 28
r['ML_RATE_ERR_2'] , # 29
r['ML_CTS_2'] , # 30
r['ML_CTS_ERR_2'] , # 31
r['ML_FLUX_2'] , # 32
r['ML_FLUX_ERR_2'] , # 33
r['ML_EXP_2'] , # 34
r['ML_BKG_2'] , # 35
r['DET_LIKE_3'] , # 36
r['ML_RATE_3'] , # 37
r['ML_RATE_ERR_3'] , # 38
r['ML_CTS_3'] , # 39
r['ML_CTS_ERR_3'] , # 40
r['ML_FLUX_3'] , # 41
r['ML_FLUX_ERR_3'] , # 42
r['ML_EXP_3'] , # 43
r['ML_BKG_3'] , # 44
r['DET_LIKE_4'] , # 45
r['ML_RATE_4'] , # 46
r['ML_RATE_ERR_4'] , # 47
r['ML_CTS_4'] , # 48
r['ML_CTS_ERR_4'] , # 49
r['ML_FLUX_4'] , # 50
r['ML_FLUX_ERR_4'] , # 51
r['ML_EXP_4'] , # 52
r['ML_BKG_4'] , # 53
])
table = tablemaker.addTable(tab, name=outfile1, description="eUDS X-ray catalog, converted from eUDS.fits")
col = table.get_column('ID_SRC') # 0
col.name="SrcID"
col.set_format("I3")
col.description="Source ID (ID_SRC)"
col = table.get_column('NAME') # 1
col.name="Name"
col.set_format("A21")
col.description="Source name, eUDS JHHMMSS.s+DDMMSS"
col = table.get_column('RA') # 2
col.set_format("F10.6")
col.name="RAdeg"
col.description="RA (J2000) (RA)"
col = table.get_column('DEC') # 3
col.name="DEdeg"
col.set_format("F10.6")
col.description="Dec (J2000) (RA)"
col = table.get_column('RADEC_ERR') # 4 Positional error (68% confidence)
col.set_format("F6.3")
col.name="ePos"
col.description="Positional uncertainty (RADEC_ERR)"
col = table.get_column('EXT') # 5 Source extent
col.set_format("F5.2")
col.name="Ext"
col.description="Source extent (EXT)"
col = table.get_column('EXT_ERR') # 6 Extent uncertainty
col.set_format("F5.2")
col.name="e_Ext"
col.description="Extent error (EXT_ERR)"
col = table.get_column('EXT_LIKE') # 7
col.set_format("F10.6")
col.name="ExtLike"
col.description="Extent likelihood (EXT_LIKE)"
col = table.get_column('DET_LIKE') # 8
col.set_format("F12.6")
col.name="DetLike"
col.description="Detection likelihood measured by PSF-fitting; 0.3-2.3 keV (DET_LIKE)"
col = table.get_column('ML_RATE') # 9
col.name="MLRate"
col.set_format("F8.6")
col.description="Source count rate measured by PSF-fitting; 0.3-2.3 keV (ML_RATE)"
col = table.get_column('ML_RATE_ERR') # 10
col.name="e_MLRate"
col.set_format("F8.6")
col.description="1 sigma count rate error; 0.3-2.3 keV (ML_RATE_ERR)"
col = table.get_column('ML_CTS') # 11
col.name="MLCts"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.3-2.3 keV (ML_CTS)"
col = table.get_column('ML_CTS_ERR') # 12
col.name="e_MLCts"
col.set_format("F11.6")
col.description="1 sigma counts error; 0.3-2.3 keV (ML_CTS_ERR)"
col = table.get_column('ML_FLUX') # 13
col.name="MLFlux"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.3-2.3 keV (ML_FLUX)"
col = table.get_column('ML_FLUX_ERR') # 14
col.name="e_MLFlux"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.3-2.3 keV (ML_FLUX_ERR)"
col = table.get_column('ML_EXP') # 15
col.name="MLExp"
col.set_format("E12.6")
col.description="Vignetted exposure value; 0.3-2.3 keV (ML_EXP)"
col = table.get_column('ML_BKG') # 16
col.name="MLBkg"
col.set_format("F12.6")
col.description="Background at the source position; 0.3-2.3 keV (ML_BKG)"
col = table.get_column('DR12_IAU_NAME') # 17 4XMM J021738.8-051257
col.name="DR12Name"
col.set_format("A21")
col.description="4XMM-DR12 source name used for forced photometry (DR12_IAU_NAME)"
col = table.get_column('DET_LIKE_1') # 18
col.name="DetLike1"
col.set_format("F12.6")
col.description="Detection likelihood measured by PSF-fitting; 0.3-0.6 keV (DET_LIKE_1)"
col = table.get_column('ML_RATE_1') # 19
col.name="MLRate1"
col.set_format("F8.6")
col.description="Source count rate measured by PSF-fitting; 0.3-0.6 keV (ML_RATE_1)"
col = table.get_column('ML_RATE_ERR_1') # 20
col.name="e_MLRate1"
col.set_format("F8.6")
col.description="1 sigma count rate error; 0.3-0.6 keV (ML_RATE_ERR_1)"
col = table.get_column('ML_CTS_1') # 21
col.name="MLCts1"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.3-0.6 keV (ML_CTS_1)"
col = table.get_column('ML_CTS_ERR_1') # 22
col.name="e_MLCts1"
col.set_format("F11.6")
col.description="1 sigma counts error; 0.3-0.6 keV (ML_CTS_ERR_1)"
col = table.get_column('ML_FLUX_1') # 23
col.name="MLFlux1"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.3-0.6 keV (ML_FLUX_1)"
col = table.get_column('ML_FLUX_ERR_1') # 24
col.name="e_MLFlux1"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.3-0.6 keV (ML_FLUX_ERR_1)"
col = table.get_column('ML_EXP_1') # 25
col.name="MLExp1"
col.set_format("E12.6")
col.description="Vignetted exposure value; 0.3-0.6 keV (ML_EXP_1)"
col = table.get_column('ML_BKG_1') # 26
col.name="MLBkg1"
col.set_format("F12.6")
col.description="Background at the source position; 0.3-0.6 keV (ML_BKG_1)"
col = table.get_column('DET_LIKE_2') # 27
col.name="DetLike2"
col.set_format("F12.6")
col.description="Detection likelihood measured by PSF-fitting; 0.6-2.3 keV (DET_LIKE_2)"
col = table.get_column('ML_RATE_2') # 28
col.name="MLRate2"
col.set_format("F8.6")
col.description="Source count rate measured by PSF-fitting; 0.6-2.3 keV (ML_RATE_2)"
col = table.get_column('ML_RATE_ERR_2') # 29
col.name="e_MLRate2"
col.set_format("F8.6")
col.description="1 sigma count rate error; 0.6-2.3 keV (ML_RATE_ERR_2)"
col = table.get_column('ML_CTS_2') # 30
col.name="MLCts2"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.6-2.3 keV (ML_CTS_2)"
col = table.get_column('ML_CTS_ERR_2') # 31
col.name="e_MLCts2"
col.set_format("F11.6")
col.description="1 sigma counts error; 0.6-2.3 keV (ML_CTS_ERR_2)"
col = table.get_column('ML_FLUX_2') # 32
col.name="MLFlux2"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.6-2.3 keV (ML_FLUX_2)"
col = table.get_column('ML_FLUX_ERR_2') # 33
col.name="e_MLFlux2"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.6-2.3 keV (ML_FLUX_ERR_2)"
col = table.get_column('ML_EXP_2') # 34
col.name="MLExp2"
col.set_format("E12.6")
col.description="Vignetted exposure value; 0.6-2.3 keV (ML_EXP_2)"
col = table.get_column('ML_BKG_2') # 35
col.name="MLBkg2"
col.set_format("F12.6")
col.description="Background at the source position; 0.6-2.3 keV (ML_BKG_2)"
col = table.get_column('DET_LIKE_3') # 36
col.name="DetLike3"
col.set_format("F12.6")
col.description="Detection likelihood measured by PSF-fitting; 2.3-5 keV (DET_LIKE_3)"
col = table.get_column('ML_RATE_3') # 37
col.name="MLRate3"
col.set_format("F8.6")
col.description="Source count rate measured by PSF-fitting; 2.3-5 keV (ML_RATE_3)"
col = table.get_column('ML_RATE_ERR_3') # 38
col.name="e_MLRate3"
col.set_format("F8.6")
col.description="1 sigma count rate error; 2.3-5 keV (ML_RATE_ERR_3)"
col = table.get_column('ML_CTS_3') # 39
col.name="MLCts3"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 2.3-5 keV (ML_CTS_3)"
col = table.get_column('ML_CTS_ERR_3') # 40
col.name="e_MLCts3"
col.set_format("F11.6")
col.description="1 sigma counts error; 2.3-5 keV (ML_CTS_ERR_3)"
col = table.get_column('ML_FLUX_3') # 41
col.name="MLFlux3"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 2.3-5 keV (ML_FLUX_3)"
col = table.get_column('ML_FLUX_ERR_3') # 42
col.name="e_MLFlux3"
col.set_format("E12.6")
col.description="1 sigma flux error; 2.3-5 keV (ML_FLUX_ERR_3)"
col = table.get_column('ML_EXP_3') # 43
col.name="MLExp3"
col.set_format("E12.6")
col.description="Vignetted exposure value; 2.3-5 keV (ML_EXP_3)"
col = table.get_column('ML_BKG_3') # 44
col.name="MLBkg3"
col.set_format("F12.6")
col.description="Background at the source position; 2.3-5 keV (ML_BKG_3)"
col = table.get_column('DET_LIKE_4') # 45
col.name="DetLike4"
col.set_format("F12.6")
col.description="Detection likelihood measured by PSF-fitting; 5-8 keV (DET_LIKE_4)"
col = table.get_column('ML_RATE_4') # 46
col.name="MLRate4"
col.set_format("F8.6")
col.description="Source count rate measured by PSF-fitting; 5-8 keV (ML_RATE_4)"
col = table.get_column('ML_RATE_ERR_4') # 47
col.name="e_MLRate4"
col.set_format("F8.6")
col.description="1 sigma count rate error; 5-8 keV (ML_RATE_ERR_4)"
col = table.get_column('ML_CTS_4') # 48
col.name="MLCts4"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 5-8 keV (ML_CTS_4)"
col = table.get_column('ML_CTS_ERR_4') # 49
col.name="e_MLCts4"
col.set_format("F11.6")
col.description="1 sigma counts error; 5-8 keV (ML_CTS_ERR_4)"
col = table.get_column('ML_FLUX_4') # 50
col.name="MLFLux4"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 5-8 keV (ML_FLUX_4)"
col = table.get_column('ML_FLUX_ERR_4') # 51
col.name="e_MLFlux4"
col.set_format("E12.6")
col.description="1 sigma flux error; 5-8 keV (ML_FLUX_ERR_4)"
col = table.get_column('ML_EXP_4') # 52
col.name="MLExp4"
col.set_format("E12.6")
col.description="Vignetted exposure value; 5-8 keV (ML_EXP_4)"
col = table.get_column('ML_BKG_4') # 53
col.name="MLBkg4"
col.set_format("F12.6")
col.description="Background at the source position; 5-8 keV (ML_BKG_4)"
#####################################
""" Read 4XMM-DR12 forced catalog """
#####################################
print("Reading {}".format(infile2))
r = Table.read(infile2)
tab2=Table([
r['DR12_IAU_NAME'], # 0
r['DR12_SRCID'], # 1
r['DR12_RA'], # 2
r['DR12_DEC'], # 3
r['DR12_RADEC_ERR'], # 4
r['DET_LIKE_0'] , # 5
r['DET_LIKE_1'] , # 6
r['DET_LIKE_2'] , # 7
r['DET_LIKE_3'] , # 8
r['DET_LIKE_4'] , # 9
r['ML_RATE_0'] , # 10
r['ML_RATE_1'] , # 11
r['ML_RATE_2'] , # 12
r['ML_RATE_3'] , # 13
r['ML_RATE_4'] , # 14
r['ML_RATE_ERR_0'] , # 15
r['ML_RATE_ERR_1'] , # 16
r['ML_RATE_ERR_2'] , # 17
r['ML_RATE_ERR_3'] , # 18
r['ML_RATE_ERR_4'] , # 19
r['ML_CTS_0'] , # 20
r['ML_CTS_1'] , # 21
r['ML_CTS_2'] , # 22
r['ML_CTS_3'] , # 23
r['ML_CTS_4'] , # 24
r['ML_CTS_ERR_0'] , # 25
r['ML_CTS_ERR_1'] , # 26
r['ML_CTS_ERR_2'] , # 27
r['ML_CTS_ERR_3'] , # 28
r['ML_CTS_ERR_4'] , # 29
r['ML_FLUX_0'] , # 30
r['ML_FLUX_1'] , # 31
r['ML_FLUX_2'] , # 32
r['ML_FLUX_3'] , # 33
r['ML_FLUX_4'] , # 34
r['ML_FLUX_ERR_0'] , # 35
r['ML_FLUX_ERR_1'] , # 36
r['ML_FLUX_ERR_2'] , # 37
r['ML_FLUX_ERR_3'] , # 38
r['ML_FLUX_ERR_4'] , # 39
r['ML_EXP_0'] , # 40
r['ML_EXP_1'] , # 41
r['ML_EXP_2'] , # 42
r['ML_EXP_3'] , # 43
r['ML_EXP_4'] , # 44
r['ML_BKG_0'] , # 45
r['ML_BKG_1'] , # 46
r['ML_BKG_2'] , # 47
r['ML_BKG_3'] , # 48
r['ML_BKG_4'] , # 49
r['CONF'], # 50
])
table2 = tablemaker.addTable(tab2, name=outfile2, description="eUDS forced photometry of 4XMM-DR12 sources, converted from eUDS_4XMM-DR12.fits")
col = table2.get_column('DR12_IAU_NAME') # 0
col.name="DR12Name"
col.set_format("A21")
col.description="4XMM-DR12 source IAU name (DR12_IAU_NAME)"
col = table2.get_column('DR12_SRCID') # 1
col.name="DR12SrcID"
col.set_format("I15")
col.description="Source ID (64-bit integer, DR12_SRCID)"
col = table2.get_column('DR12_RA') # 2
col.name="RAdeg"
col.set_format("F10.6")
col.description="Right ascension (J2000, DR12_RA)"
col = table2.get_column('DR12_DEC') # 3
col.name="DEdeg"
col.set_format("F10.6")
col.description="Declination (J2000, DR12_DEC)"
col = table2.get_column('DR12_RADEC_ERR') # 4
col.name="ePos"
col.set_format("F6.3")
col.description="Positional error (DR12_RADEC_ERR)"
col = table2.get_column('DET_LIKE_0') # 5
col.name="DetLike0"
col.set_format("F12.6")
col.description="Detection likelihood; 0.3-2.3 keV (DET_LIKE_0)"
col = table2.get_column('DET_LIKE_1') # 6
col.name="DetLike1"
col.set_format("F12.6")
col.description="Detection likelihood; 0.3-0.6 keV (DET_LIKE_1)"
col = table2.get_column('DET_LIKE_2') # 7
col.name="DetLike2"
col.set_format("F12.6")
col.description="Detection likelihood; 0.6-2.3 keV (DET_LIKE_2)"
col = table2.get_column('DET_LIKE_3') # 8
col.name="DetLike3"
col.set_format("F12.6")
col.description="Detection likelihood; 2.3-5 keV (DET_LIKE_3)"
col = table2.get_column('DET_LIKE_4') # 9
col.name="DetLike4"
col.set_format("F12.6")
col.description="Detection likelihood; 5-8 keV (DET_LIKE_4)"
col = table2.get_column('ML_RATE_0') # 10
col.name="MLRate0"
col.set_format("F10.6")
col.description="Source count rate measured by PSF-fitting; 0.3-2.3 keV (ML_RATE_0)"
col = table2.get_column('ML_RATE_1') # 11
col.name="MLRate1"
col.set_format("F10.6")
col.description="Source count rate measured by PSF-fitting; 0.3-0.6 keV (ML_RATE_1)"
col = table2.get_column('ML_RATE_2') # 12
col.name="MLRate2"
col.set_format("F10.6")
col.description="Source count rate measured by PSF-fitting; 0.6-2.3 keV (ML_RATE_2)"
col = table2.get_column('ML_RATE_3') # 13
col.name="MLRate3"
col.set_format("F10.6")
col.description="Source count rate measured by PSF-fitting; 2.3-5 keV (ML_RATE_3)"
col = table2.get_column('ML_RATE_4') # 14
col.name="MLRate4"
col.set_format("F10.6")
col.description="Source count rate measured by PSF-fitting; 5-8 keV (ML_RATE_4)"
col = table2.get_column('ML_RATE_ERR_0') # 15
col.name="e_MLRate0"
col.set_format("F10.6")
col.description="1 sigma count rate error; 0.3-2.3 keV (ML_RATE_ERR_0)"
col = table2.get_column('ML_RATE_ERR_1') # 16
col.name="e_MLRate1"
col.set_format("F10.6")
col.description="1 sigma count rate error; 0.3-0.6 keV (ML_RATE_ERR_1)"
col = table2.get_column('ML_RATE_ERR_2') # 17
col.name="e_MLRate2"
col.set_format("F10.6")
col.description="1 sigma count rate error; 0.6-2.3 keV (ML_RATE_ERR_2)"
col = table2.get_column('ML_RATE_ERR_3') # 18
col.name="e_MLRate3"
col.set_format("F10.6")
col.description="1 sigma count rate error; 2.3-5 keV (ML_RATE_ERR_3)"
col = table2.get_column('ML_RATE_ERR_4') # 19
col.name="e_MLRate4"
col.set_format("F10.6")
col.description="1 sigma count rate error; 5-8 keV (ML_RATE_ERR_4)"
col = table2.get_column('ML_CTS_0') # 20
col.name="MLCts0"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.3-2.3 keV (ML_CTS_0)"
col = table2.get_column('ML_CTS_1') # 21
col.name="MLCts1"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.3-0.6 keV (ML_CTS_1)"
col = table2.get_column('ML_CTS_2') # 22
col.name="MLCts2"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 0.6-2.3 keV (ML_CTS_2)"
col = table2.get_column('ML_CTS_3') # 23
col.name="MLCts3"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 2.3-5 keV (ML_CTS_3)"
col = table2.get_column('ML_CTS_4') # 24
col.name="MLCts4"
col.set_format("F11.6")
col.description="Source net counts measured from count rate; 5-8 keV (ML_CTS_4)"
col = table2.get_column('ML_CTS_ERR_0') # 25
col.name="e_MLCts0"
col.set_format("F12.6")
col.description="1 sigma counts error; 0.3-2.3 keV (ML_CTS_ERR_0)"
col = table2.get_column('ML_CTS_ERR_1') # 26
col.name="e_MLCts1"
col.set_format("F12.6")
col.description="1 sigma counts error; 0.3-0.6 keV (ML_CTS_ERR_1)"
col = table2.get_column('ML_CTS_ERR_2') # 27
col.name="e_MLCts2"
col.set_format("F12.6")
col.description="1 sigma counts error; 0.6-2.3 keV (ML_CTS_ERR_2)"
col = table2.get_column('ML_CTS_ERR_3') # 28
col.name="e_MLCts3"
col.set_format("F12.6")
col.description="1 sigma counts error; 2.3-5 keV (ML_CTS_ERR_3)"
col = table2.get_column('ML_CTS_ERR_4') # 29
col.name="e_MLCts4"
col.set_format("F12.6")
col.description="1 sigma counts error; 5-8 keV (ML_CTS_ERR_4)"
col = table2.get_column('ML_FLUX_0') # 30
col.name="MLFlux0"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.3-2.3 keV (ML_FLUX_0)"
col = table2.get_column('ML_FLUX_1') # 31
col.name="MLFlux1"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.3-0.6 keV (ML_FLUX_1)"
col = table2.get_column('ML_FLUX_2') # 32
col.name="MLFlux2"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 0.6-2.3 keV (ML_FLUX_2)"
col = table2.get_column('ML_FLUX_3') # 33
col.name="MLFlux3"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 2.3-5 keV (ML_FLUX_3)"
col = table2.get_column('ML_FLUX_4') # 34
col.name="MLFlux4"
col.set_format("E12.6")
col.description="Source flux converted from count rate; 5-8 keV (ML_FLUX_4)"
col = table2.get_column('ML_FLUX_ERR_0') # 35
col.name="e_MLFlux0"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.3-2.3 keV (ML_FLUX_ERR_0)"
col = table2.get_column('ML_FLUX_ERR_1') # 36
col.name="e_MLFlux1"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.3-0.6 keV (ML_FLUX_ERR_1)"
col = table2.get_column('ML_FLUX_ERR_2') # 37
col.name="e_MLFlux2"
col.set_format("E12.6")
col.description="1 sigma flux error; 0.6-2.3 keV (ML_FLUX_ERR_2)"
col = table2.get_column('ML_FLUX_ERR_3') # 38
col.name="e_MLFlux3"
col.set_format("E12.6")
col.description="1 sigma flux error; 2.3-5 keV (ML_FLUX_ERR_3)"
col = table2.get_column('ML_FLUX_ERR_4') # 39
col.name="e_MLFlux4"
col.set_format("E12.6")
col.description="1 sigma flux error; 5-8 keV (ML_FLUX_ERR_4)"
col = table2.get_column('ML_EXP_0') # 40
col.name="MLExp0"
col.set_format("E10.6")
col.description="Vignetted exposure value; 0.3-2.3 keV (ML_EXP_0)"
col = table2.get_column('ML_EXP_1') # 41
col.name="MLExp1"
col.set_format("E10.6")
col.description="Vignetted exposure value; 0.3-0.6 keV (ML_EXP_1)"
col = table2.get_column('ML_EXP_2') # 42
col.name="MLExp2"
col.set_format("E10.6")
col.description="Vignetted exposure value; 0.6-2.3 keV (ML_EXP_2)"
col = table2.get_column('ML_EXP_3') # 43
col.name="MLExp3"
col.set_format("E10.6")
col.description="Vignetted exposure value; 2.3-5 keV (ML_EXP_3)"
col = table2.get_column('ML_EXP_4') # 44
col.name="MLExp4"
col.set_format("E10.6")
col.description="Vignetted exposure value; 5-8 keV (ML_EXP_4)"
col = table2.get_column('ML_BKG_0') # 45
col.name="MLBkg0"
col.set_format("F12.6")
col.description="Background at the source position; 0.3-2.3 keV (ML_BKG_0)"
col = table2.get_column('ML_BKG_1') # 46
col.name="MLBkg1"
col.set_format("F12.6")
col.description="Background at the source position; 0.3-0.6 keV (ML_BKG_1)"
col = table2.get_column('ML_BKG_2') # 47
col.name="MLBkg2"
col.set_format("F12.6")
col.description="Background at the source position; 0.6-2.3 keV (ML_BKG_2)"
col = table2.get_column('ML_BKG_3') # 48
col.name="MLBkg3"
col.set_format("F12.6")
col.description="Background at the source position; 2.3-5 keV (ML_BKG_3)"
col = table2.get_column('ML_BKG_4') # 49
col.name="MLBkg4"
col.set_format("F12.6")
col.description="Background at the source position; 5-8 keV (ML_BKG_4)"
col = table2.get_column('CONF') # 50
col.name="Conf"
col.set_format("I1")
col.description="True if source is located within 60 arcsec from another source with 0.3-2.3 keV flux > 1E14 erg/s/cm**2 (CONF)"
tablemaker.writeCDSTables()
# Customize ReadMe output
tablemaker.title = "eUDS: The SRG/eROSITA X-ray Survey of the UKIDSS Ultra Deep Survey Field. Catalogue of Sources."
tablemaker.author = 'Krivonos R.'
tablemaker.authors="Gilfanov M., Medvedev P., Sazonov S., Sunyaev R."
tablemaker.date = 2024
tablemaker.bibcode = "2024MNRAS.528.1264K"
tablemaker.keywords = "catalogues - surveys - X-ray: general"
tablemaker.abstract = "The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) spacecraft observed the field of the UKIDSS Ultra-Deep Survey (UDS) in August-September 2019, during its flight to Sun-Earth L2 point. The resulting eROSITA UDS (or eUDS) survey was thus the first eROSITA X-ray imaging survey, which demonstrated the capability of the telescope to perform uniform observations of large sky areas. With a moderate single-camera exposure of 150 ks, eUDS covered 5 deg^2^ with the limiting flux ranging between 4*10^-15^ and 5*10^-14^erg/cm^2^/s in the 0.3-2.3 keV band. We present a catalogue of 647 sources detected at likelihood >10 (4sigma) during the eUDS. The catalogue provides information on the source fluxes in the main energy band 0.3-2.3 keV and forced photometry in a number of bands between 0.3 and 8 keV. Using the deeper 4XMM-DR12 catalogue, we have identified 22 strongly variable objects that have brightened or faded by at least a factor of ten during the eROSITA observations compared to previous observations by XMM-Newton. We also provide a catalogue of 22 sources detected by eROSITA in the hard energy band of 2.3-5 keV."
tablemaker.more_description = "The catalogue (fits/eUDS.fits) contains 647 sources detected in the 0.3-2.3 keV band using eSASS adopting a detection likelihood threshold of 10. The catalogue provides information on the source fluxes in the main energy band 0: 0.3-2.3 keV and forced photometry in 1: 0.3-0.6, 2: 0.6-2.3, 3: 2.3-5.0 and 4: 5.0-8.0 keV bands. The catalogue of forced PSF-fitting fluxes (fits/eUDS_4XMM-DR12.fits) contains 3603 XMM-Newton sources from 4XMM-DR12 catalogue with the eUDS exposure of more than 100 s. The catalogue provides information on the source forced photometry in the energy bands 0: 0.3-2.3, 1: 0.3-0.6, 2: 0.6-2.3, 3: 2.3-5.0 and 4: 5.0-8.0 keV. To warn about the potential impact of spatial confusion with a nearby bright source, we added a confusion flag (see original paper for details)."
tablemaker.putRef("J/A+A/661/A1","The eFEDS X-ray catalogs (Brunner+, 2022)")
tablemaker.putRef("J/A+A/661/A38","SRG/ART-XC 1st year all-sky X-ray survey (Pavlinsky+, 2022)")
tablemaker.putRef("https://www.srg.cosmos.ru/eUDS","eUDS catalog")
#tablemaker.makeReadMe()
with open("ReadMe.tmp","w") as fd:
tablemaker.makeReadMe(out=fd)
make_euds_cds(infile1="../uds/products/eUDS.fits",outfile1='table1.dat',
infile2="../uds/products/eUDS_4XMM-DR12.fits",outfile2='table2.dat')