import glob, sys from astropy.io import fits import statistics import pandas as pd import numpy as np import csv colnames=['Match', 'Ref', 'Dup', 'RA', 'Dec', 'Incl'] flist=glob.glob('../products/tm[1,5,6,7]*en0*src.fits') total1=0 total2=0 for f in flist: hdul = fits.open(f) try: table=hdul[1].data['RADEC_ERR'] except: continue hdul.close() dref=f.replace("src.fits","ref.fits") hdul = fits.open(dref) try: rtable=hdul[1].data['RA'] except: continue hdul.close() err=[] err10=[] dfile=f.replace("shu2019.src.fits","xfm.log.dat.awk") with open(dfile) as csvfile: spamreader = csv.reader(csvfile, delimiter=' ') total=0 for row in spamreader: if(row[5] == 'N'): continue for ii,values in np.ndenumerate(rtable): if(int(row[2]) == int(ii[0])): total=total+1 #print(">>",row[5],rtable[ii],table[ii],ii[0]) if(table[ii]>0.0): err.append(table[ii]) if(table[ii]>10.0): err10.append(table[ii]) total1=total1+total total2=total2+len(err) #print("{} MIN {:.2f} MAX {:.2f} ({}/{})".format(f[12:15],min(err),max(err),len(err10),len(err))) print("{} MIN {:.2f} MAX {:.2f} ({}/{})".format(f,min(err),max(err),len(err10),len(err))) #sys.exit() #print(total1,total2)