684 lines
27 KiB
Python
684 lines
27 KiB
Python
import cdspyreadme
|
||
from astropy.io import fits
|
||
from astropy.table import Table
|
||
|
||
def make_euds_cds(infile1=None,outfile1=None,infile2=None,outfile2=None,fluxlim=None):
|
||
|
||
print("Reading {}".format(infile1))
|
||
|
||
#########################
|
||
""" Read eUDS catalog """
|
||
#########################
|
||
|
||
tablemaker = cdspyreadme.CDSTablesMaker()
|
||
|
||
r = Table.read(infile1)
|
||
tab=Table([
|
||
r['ID_SRC'], # 0
|
||
r['NAME'], # 1
|
||
r['RA'], # 2
|
||
r['DEC'], # 3
|
||
r['RADEC_ERR'], # 4 Positional error (68% confidence)
|
||
r['EXT'], # 5 Source extent
|
||
r['EXT_ERR'], # 6 Extent uncertainty
|
||
r['EXT_LIKE'], # 7
|
||
r['DET_LIKE'], # 8
|
||
r['ML_RATE'], # 9
|
||
r['ML_RATE_ERR'], # 10
|
||
r['ML_CTS'], # 11
|
||
r['ML_CTS_ERR'], # 12
|
||
r['ML_FLUX'], # 13
|
||
r['ML_FLUX_ERR'], # 14
|
||
r['ML_EXP'], # 15
|
||
r['ML_BKG'], # 16
|
||
r['DR12_IAU_NAME'] , # 17 4XMM J021738.8-051257
|
||
r['DET_LIKE_1'] , # 18
|
||
r['ML_RATE_1'] , # 19
|
||
r['ML_RATE_ERR_1'] , # 20
|
||
r['ML_CTS_1'] , # 21
|
||
r['ML_CTS_ERR_1'] , # 22
|
||
r['ML_FLUX_1'] , # 23
|
||
r['ML_FLUX_ERR_1'] , # 24
|
||
r['ML_EXP_1'] , # 25
|
||
r['ML_BKG_1'] , # 26
|
||
r['DET_LIKE_2'] , # 27
|
||
r['ML_RATE_2'] , # 28
|
||
r['ML_RATE_ERR_2'] , # 29
|
||
r['ML_CTS_2'] , # 30
|
||
r['ML_CTS_ERR_2'] , # 31
|
||
r['ML_FLUX_2'] , # 32
|
||
r['ML_FLUX_ERR_2'] , # 33
|
||
r['ML_EXP_2'] , # 34
|
||
r['ML_BKG_2'] , # 35
|
||
r['DET_LIKE_3'] , # 36
|
||
r['ML_RATE_3'] , # 37
|
||
r['ML_RATE_ERR_3'] , # 38
|
||
r['ML_CTS_3'] , # 39
|
||
r['ML_CTS_ERR_3'] , # 40
|
||
r['ML_FLUX_3'] , # 41
|
||
r['ML_FLUX_ERR_3'] , # 42
|
||
r['ML_EXP_3'] , # 43
|
||
r['ML_BKG_3'] , # 44
|
||
r['DET_LIKE_4'] , # 45
|
||
r['ML_RATE_4'] , # 46
|
||
r['ML_RATE_ERR_4'] , # 47
|
||
r['ML_CTS_4'] , # 48
|
||
r['ML_CTS_ERR_4'] , # 49
|
||
r['ML_FLUX_4'] , # 50
|
||
r['ML_FLUX_ERR_4'] , # 51
|
||
r['ML_EXP_4'] , # 52
|
||
r['ML_BKG_4'] , # 53
|
||
])
|
||
|
||
table = tablemaker.addTable(tab, name=outfile1, description="eUDS X-ray catalog, converted from eUDS.fits")
|
||
|
||
col = table.get_column('ID_SRC') # 0
|
||
col.name="SrcID"
|
||
col.set_format("I3")
|
||
col.description="Source ID (ID_SRC)"
|
||
|
||
col = table.get_column('NAME') # 1
|
||
col.name="Name"
|
||
col.set_format("A21")
|
||
col.description="Source name, eUDS JHHMMSS.s+DDMMSS"
|
||
|
||
col = table.get_column('RA') # 2
|
||
col.set_format("F10.6")
|
||
col.name="RAdeg"
|
||
col.description="RA (J2000) (RA)"
|
||
|
||
col = table.get_column('DEC') # 3
|
||
col.name="DEdeg"
|
||
col.set_format("F10.6")
|
||
col.description="Dec (J2000) (RA)"
|
||
|
||
col = table.get_column('RADEC_ERR') # 4 Positional error (68% confidence)
|
||
col.set_format("F6.3")
|
||
col.name="ePos"
|
||
col.description="Positional uncertainty (RADEC_ERR)"
|
||
|
||
col = table.get_column('EXT') # 5 Source extent
|
||
col.set_format("F5.2")
|
||
col.name="Ext"
|
||
col.description="Source extent (EXT)"
|
||
|
||
col = table.get_column('EXT_ERR') # 6 Extent uncertainty
|
||
col.set_format("F5.2")
|
||
col.name="e_Ext"
|
||
col.description="Extent error (EXT_ERR)"
|
||
|
||
col = table.get_column('EXT_LIKE') # 7
|
||
col.set_format("F10.6")
|
||
col.name="ExtLike"
|
||
col.description="Extent likelihood (EXT_LIKE)"
|
||
|
||
col = table.get_column('DET_LIKE') # 8
|
||
col.set_format("F12.6")
|
||
col.name="DetLike"
|
||
col.description="Detection likelihood measured by PSF-fitting; 0.3-2.3 keV (DET_LIKE)"
|
||
|
||
col = table.get_column('ML_RATE') # 9
|
||
col.name="MLRate"
|
||
col.set_format("F8.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.3-2.3 keV (ML_RATE)"
|
||
|
||
col = table.get_column('ML_RATE_ERR') # 10
|
||
col.name="e_MLRate"
|
||
col.set_format("F8.6")
|
||
col.description="1 sigma count rate error; 0.3-2.3 keV (ML_RATE_ERR)"
|
||
|
||
col = table.get_column('ML_CTS') # 11
|
||
col.name="MLCts"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.3-2.3 keV (ML_CTS)"
|
||
|
||
col = table.get_column('ML_CTS_ERR') # 12
|
||
col.name="e_MLCts"
|
||
col.set_format("F11.6")
|
||
col.description="1 sigma counts error; 0.3-2.3 keV (ML_CTS_ERR)"
|
||
|
||
col = table.get_column('ML_FLUX') # 13
|
||
col.name="MLFlux"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.3-2.3 keV (ML_FLUX)"
|
||
|
||
col = table.get_column('ML_FLUX_ERR') # 14
|
||
col.name="e_MLFlux"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.3-2.3 keV (ML_FLUX_ERR)"
|
||
|
||
col = table.get_column('ML_EXP') # 15
|
||
col.name="MLExp"
|
||
col.set_format("E12.6")
|
||
col.description="Vignetted exposure value; 0.3-2.3 keV (ML_EXP)"
|
||
|
||
col = table.get_column('ML_BKG') # 16
|
||
col.name="MLBkg"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.3-2.3 keV (ML_BKG)"
|
||
|
||
col = table.get_column('DR12_IAU_NAME') # 17 4XMM J021738.8-051257
|
||
col.name="DR12Name"
|
||
col.set_format("A21")
|
||
col.description="4XMM-DR12 source name used for forced photometry (DR12_IAU_NAME)"
|
||
|
||
col = table.get_column('DET_LIKE_1') # 18
|
||
col.name="DetLike1"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood measured by PSF-fitting; 0.3-0.6 keV (DET_LIKE_1)"
|
||
|
||
col = table.get_column('ML_RATE_1') # 19
|
||
col.name="MLRate1"
|
||
col.set_format("F8.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.3-0.6 keV (ML_RATE_1)"
|
||
|
||
col = table.get_column('ML_RATE_ERR_1') # 20
|
||
col.name="e_MLRate1"
|
||
col.set_format("F8.6")
|
||
col.description="1 sigma count rate error; 0.3-0.6 keV (ML_RATE_ERR_1)"
|
||
|
||
col = table.get_column('ML_CTS_1') # 21
|
||
col.name="MLCts1"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.3-0.6 keV (ML_CTS_1)"
|
||
|
||
col = table.get_column('ML_CTS_ERR_1') # 22
|
||
col.name="e_MLCts1"
|
||
col.set_format("F11.6")
|
||
col.description="1 sigma counts error; 0.3-0.6 keV (ML_CTS_ERR_1)"
|
||
|
||
col = table.get_column('ML_FLUX_1') # 23
|
||
col.name="MLFlux1"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.3-0.6 keV (ML_FLUX_1)"
|
||
|
||
col = table.get_column('ML_FLUX_ERR_1') # 24
|
||
col.name="e_MLFlux1"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.3-0.6 keV (ML_FLUX_ERR_1)"
|
||
|
||
col = table.get_column('ML_EXP_1') # 25
|
||
col.name="MLExp1"
|
||
col.set_format("E12.6")
|
||
col.description="Vignetted exposure value; 0.3-0.6 keV (ML_EXP_1)"
|
||
|
||
col = table.get_column('ML_BKG_1') # 26
|
||
col.name="MLBkg1"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.3-0.6 keV (ML_BKG_1)"
|
||
|
||
col = table.get_column('DET_LIKE_2') # 27
|
||
col.name="DetLike2"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood measured by PSF-fitting; 0.6-2.3 keV (DET_LIKE_2)"
|
||
|
||
col = table.get_column('ML_RATE_2') # 28
|
||
col.name="MLRate2"
|
||
col.set_format("F8.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.6-2.3 keV (ML_RATE_2)"
|
||
|
||
col = table.get_column('ML_RATE_ERR_2') # 29
|
||
col.name="e_MLRate2"
|
||
col.set_format("F8.6")
|
||
col.description="1 sigma count rate error; 0.6-2.3 keV (ML_RATE_ERR_2)"
|
||
|
||
col = table.get_column('ML_CTS_2') # 30
|
||
col.name="MLCts2"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.6-2.3 keV (ML_CTS_2)"
|
||
|
||
col = table.get_column('ML_CTS_ERR_2') # 31
|
||
col.name="e_MLCts2"
|
||
col.set_format("F11.6")
|
||
col.description="1 sigma counts error; 0.6-2.3 keV (ML_CTS_ERR_2)"
|
||
|
||
col = table.get_column('ML_FLUX_2') # 32
|
||
col.name="MLFlux2"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.6-2.3 keV (ML_FLUX_2)"
|
||
|
||
col = table.get_column('ML_FLUX_ERR_2') # 33
|
||
col.name="e_MLFlux2"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.6-2.3 keV (ML_FLUX_ERR_2)"
|
||
|
||
col = table.get_column('ML_EXP_2') # 34
|
||
col.name="MLExp2"
|
||
col.set_format("E12.6")
|
||
col.description="Vignetted exposure value; 0.6-2.3 keV (ML_EXP_2)"
|
||
|
||
col = table.get_column('ML_BKG_2') # 35
|
||
col.name="MLBkg2"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.6-2.3 keV (ML_BKG_2)"
|
||
|
||
col = table.get_column('DET_LIKE_3') # 36
|
||
col.name="DetLike3"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood measured by PSF-fitting; 2.3-5 keV (DET_LIKE_3)"
|
||
|
||
col = table.get_column('ML_RATE_3') # 37
|
||
col.name="MLRate3"
|
||
col.set_format("F8.6")
|
||
col.description="Source count rate measured by PSF-fitting; 2.3-5 keV (ML_RATE_3)"
|
||
|
||
col = table.get_column('ML_RATE_ERR_3') # 38
|
||
col.name="e_MLRate3"
|
||
col.set_format("F8.6")
|
||
col.description="1 sigma count rate error; 2.3-5 keV (ML_RATE_ERR_3)"
|
||
|
||
col = table.get_column('ML_CTS_3') # 39
|
||
col.name="MLCts3"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 2.3-5 keV (ML_CTS_3)"
|
||
|
||
col = table.get_column('ML_CTS_ERR_3') # 40
|
||
col.name="e_MLCts3"
|
||
col.set_format("F11.6")
|
||
col.description="1 sigma counts error; 2.3-5 keV (ML_CTS_ERR_3)"
|
||
|
||
col = table.get_column('ML_FLUX_3') # 41
|
||
col.name="MLFlux3"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 2.3-5 keV (ML_FLUX_3)"
|
||
|
||
col = table.get_column('ML_FLUX_ERR_3') # 42
|
||
col.name="e_MLFlux3"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 2.3-5 keV (ML_FLUX_ERR_3)"
|
||
|
||
col = table.get_column('ML_EXP_3') # 43
|
||
col.name="MLExp3"
|
||
col.set_format("E12.6")
|
||
col.description="Vignetted exposure value; 2.3-5 keV (ML_EXP_3)"
|
||
|
||
col = table.get_column('ML_BKG_3') # 44
|
||
col.name="MLBkg3"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 2.3-5 keV (ML_BKG_3)"
|
||
|
||
col = table.get_column('DET_LIKE_4') # 45
|
||
col.name="DetLike4"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood measured by PSF-fitting; 5-8 keV (DET_LIKE_4)"
|
||
|
||
col = table.get_column('ML_RATE_4') # 46
|
||
col.name="MLRate4"
|
||
col.set_format("F8.6")
|
||
col.description="Source count rate measured by PSF-fitting; 5-8 keV (ML_RATE_4)"
|
||
|
||
col = table.get_column('ML_RATE_ERR_4') # 47
|
||
col.name="e_MLRate4"
|
||
col.set_format("F8.6")
|
||
col.description="1 sigma count rate error; 5-8 keV (ML_RATE_ERR_4)"
|
||
|
||
col = table.get_column('ML_CTS_4') # 48
|
||
col.name="MLCts4"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 5-8 keV (ML_CTS_4)"
|
||
|
||
col = table.get_column('ML_CTS_ERR_4') # 49
|
||
col.name="e_MLCts4"
|
||
col.set_format("F11.6")
|
||
col.description="1 sigma counts error; 5-8 keV (ML_CTS_ERR_4)"
|
||
|
||
col = table.get_column('ML_FLUX_4') # 50
|
||
col.name="MLFLux4"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 5-8 keV (ML_FLUX_4)"
|
||
|
||
col = table.get_column('ML_FLUX_ERR_4') # 51
|
||
col.name="e_MLFlux4"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 5-8 keV (ML_FLUX_ERR_4)"
|
||
|
||
col = table.get_column('ML_EXP_4') # 52
|
||
col.name="MLExp4"
|
||
col.set_format("E12.6")
|
||
col.description="Vignetted exposure value; 5-8 keV (ML_EXP_4)"
|
||
|
||
col = table.get_column('ML_BKG_4') # 53
|
||
col.name="MLBkg4"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 5-8 keV (ML_BKG_4)"
|
||
|
||
#####################################
|
||
""" Read 4XMM-DR12 forced catalog """
|
||
#####################################
|
||
print("Reading {}".format(infile2))
|
||
|
||
r = Table.read(infile2)
|
||
tab2=Table([
|
||
r['DR12_IAU_NAME'], # 0
|
||
r['DR12_SRCID'], # 1
|
||
r['DR12_RA'], # 2
|
||
r['DR12_DEC'], # 3
|
||
r['DR12_RADEC_ERR'], # 4
|
||
r['DET_LIKE_0'] , # 5
|
||
r['DET_LIKE_1'] , # 6
|
||
r['DET_LIKE_2'] , # 7
|
||
r['DET_LIKE_3'] , # 8
|
||
r['DET_LIKE_4'] , # 9
|
||
r['ML_RATE_0'] , # 10
|
||
r['ML_RATE_1'] , # 11
|
||
r['ML_RATE_2'] , # 12
|
||
r['ML_RATE_3'] , # 13
|
||
r['ML_RATE_4'] , # 14
|
||
r['ML_RATE_ERR_0'] , # 15
|
||
r['ML_RATE_ERR_1'] , # 16
|
||
r['ML_RATE_ERR_2'] , # 17
|
||
r['ML_RATE_ERR_3'] , # 18
|
||
r['ML_RATE_ERR_4'] , # 19
|
||
r['ML_CTS_0'] , # 20
|
||
r['ML_CTS_1'] , # 21
|
||
r['ML_CTS_2'] , # 22
|
||
r['ML_CTS_3'] , # 23
|
||
r['ML_CTS_4'] , # 24
|
||
r['ML_CTS_ERR_0'] , # 25
|
||
r['ML_CTS_ERR_1'] , # 26
|
||
r['ML_CTS_ERR_2'] , # 27
|
||
r['ML_CTS_ERR_3'] , # 28
|
||
r['ML_CTS_ERR_4'] , # 29
|
||
r['ML_FLUX_0'] , # 30
|
||
r['ML_FLUX_1'] , # 31
|
||
r['ML_FLUX_2'] , # 32
|
||
r['ML_FLUX_3'] , # 33
|
||
r['ML_FLUX_4'] , # 34
|
||
r['ML_FLUX_ERR_0'] , # 35
|
||
r['ML_FLUX_ERR_1'] , # 36
|
||
r['ML_FLUX_ERR_2'] , # 37
|
||
r['ML_FLUX_ERR_3'] , # 38
|
||
r['ML_FLUX_ERR_4'] , # 39
|
||
r['ML_EXP_0'] , # 40
|
||
r['ML_EXP_1'] , # 41
|
||
r['ML_EXP_2'] , # 42
|
||
r['ML_EXP_3'] , # 43
|
||
r['ML_EXP_4'] , # 44
|
||
r['ML_BKG_0'] , # 45
|
||
r['ML_BKG_1'] , # 46
|
||
r['ML_BKG_2'] , # 47
|
||
r['ML_BKG_3'] , # 48
|
||
r['ML_BKG_4'] , # 49
|
||
r['CONF'], # 50
|
||
])
|
||
|
||
table2 = tablemaker.addTable(tab2, name=outfile2, description="eUDS forced photometry of 4XMM-DR12 sources, converted from eUDS_4XMM-DR12.fits")
|
||
|
||
col = table2.get_column('DR12_IAU_NAME') # 0
|
||
col.name="DR12Name"
|
||
col.set_format("A21")
|
||
col.description="4XMM-DR12 source IAU name (DR12_IAU_NAME)"
|
||
|
||
col = table2.get_column('DR12_SRCID') # 1
|
||
col.name="DR12SrcID"
|
||
col.set_format("I15")
|
||
col.description="Source ID (64-bit integer, DR12_SRCID)"
|
||
|
||
col = table2.get_column('DR12_RA') # 2
|
||
col.name="RAdeg"
|
||
col.set_format("F10.6")
|
||
col.description="Right ascension (J2000, DR12_RA)"
|
||
|
||
col = table2.get_column('DR12_DEC') # 3
|
||
col.name="DEdeg"
|
||
col.set_format("F10.6")
|
||
col.description="Declination (J2000, DR12_DEC)"
|
||
|
||
col = table2.get_column('DR12_RADEC_ERR') # 4
|
||
col.name="ePos"
|
||
col.set_format("F6.3")
|
||
col.description="Positional error (DR12_RADEC_ERR)"
|
||
|
||
col = table2.get_column('DET_LIKE_0') # 5
|
||
col.name="DetLike0"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood; 0.3-2.3 keV (DET_LIKE_0)"
|
||
|
||
col = table2.get_column('DET_LIKE_1') # 6
|
||
col.name="DetLike1"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood; 0.3-0.6 keV (DET_LIKE_1)"
|
||
|
||
col = table2.get_column('DET_LIKE_2') # 7
|
||
col.name="DetLike2"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood; 0.6-2.3 keV (DET_LIKE_2)"
|
||
|
||
col = table2.get_column('DET_LIKE_3') # 8
|
||
col.name="DetLike3"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood; 2.3-5 keV (DET_LIKE_3)"
|
||
|
||
col = table2.get_column('DET_LIKE_4') # 9
|
||
col.name="DetLike4"
|
||
col.set_format("F12.6")
|
||
col.description="Detection likelihood; 5-8 keV (DET_LIKE_4)"
|
||
|
||
col = table2.get_column('ML_RATE_0') # 10
|
||
col.name="MLRate0"
|
||
col.set_format("F10.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.3-2.3 keV (ML_RATE_0)"
|
||
|
||
col = table2.get_column('ML_RATE_1') # 11
|
||
col.name="MLRate1"
|
||
col.set_format("F10.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.3-0.6 keV (ML_RATE_1)"
|
||
|
||
col = table2.get_column('ML_RATE_2') # 12
|
||
col.name="MLRate2"
|
||
col.set_format("F10.6")
|
||
col.description="Source count rate measured by PSF-fitting; 0.6-2.3 keV (ML_RATE_2)"
|
||
|
||
col = table2.get_column('ML_RATE_3') # 13
|
||
col.name="MLRate3"
|
||
col.set_format("F10.6")
|
||
col.description="Source count rate measured by PSF-fitting; 2.3-5 keV (ML_RATE_3)"
|
||
|
||
col = table2.get_column('ML_RATE_4') # 14
|
||
col.name="MLRate4"
|
||
col.set_format("F10.6")
|
||
col.description="Source count rate measured by PSF-fitting; 5-8 keV (ML_RATE_4)"
|
||
|
||
col = table2.get_column('ML_RATE_ERR_0') # 15
|
||
col.name="e_MLRate0"
|
||
col.set_format("F10.6")
|
||
col.description="1 sigma count rate error; 0.3-2.3 keV (ML_RATE_ERR_0)"
|
||
|
||
col = table2.get_column('ML_RATE_ERR_1') # 16
|
||
col.name="e_MLRate1"
|
||
col.set_format("F10.6")
|
||
col.description="1 sigma count rate error; 0.3-0.6 keV (ML_RATE_ERR_1)"
|
||
|
||
col = table2.get_column('ML_RATE_ERR_2') # 17
|
||
col.name="e_MLRate2"
|
||
col.set_format("F10.6")
|
||
col.description="1 sigma count rate error; 0.6-2.3 keV (ML_RATE_ERR_2)"
|
||
|
||
col = table2.get_column('ML_RATE_ERR_3') # 18
|
||
col.name="e_MLRate3"
|
||
col.set_format("F10.6")
|
||
col.description="1 sigma count rate error; 2.3-5 keV (ML_RATE_ERR_3)"
|
||
|
||
col = table2.get_column('ML_RATE_ERR_4') # 19
|
||
col.name="e_MLRate4"
|
||
col.set_format("F10.6")
|
||
col.description="1 sigma count rate error; 5-8 keV (ML_RATE_ERR_4)"
|
||
|
||
col = table2.get_column('ML_CTS_0') # 20
|
||
col.name="MLCts0"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.3-2.3 keV (ML_CTS_0)"
|
||
|
||
col = table2.get_column('ML_CTS_1') # 21
|
||
col.name="MLCts1"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.3-0.6 keV (ML_CTS_1)"
|
||
|
||
col = table2.get_column('ML_CTS_2') # 22
|
||
col.name="MLCts2"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 0.6-2.3 keV (ML_CTS_2)"
|
||
|
||
col = table2.get_column('ML_CTS_3') # 23
|
||
col.name="MLCts3"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 2.3-5 keV (ML_CTS_3)"
|
||
|
||
col = table2.get_column('ML_CTS_4') # 24
|
||
col.name="MLCts4"
|
||
col.set_format("F11.6")
|
||
col.description="Source net counts measured from count rate; 5-8 keV (ML_CTS_4)"
|
||
|
||
col = table2.get_column('ML_CTS_ERR_0') # 25
|
||
col.name="e_MLCts0"
|
||
col.set_format("F12.6")
|
||
col.description="1 sigma counts error; 0.3-2.3 keV (ML_CTS_ERR_0)"
|
||
|
||
col = table2.get_column('ML_CTS_ERR_1') # 26
|
||
col.name="e_MLCts1"
|
||
col.set_format("F12.6")
|
||
col.description="1 sigma counts error; 0.3-0.6 keV (ML_CTS_ERR_1)"
|
||
|
||
col = table2.get_column('ML_CTS_ERR_2') # 27
|
||
col.name="e_MLCts2"
|
||
col.set_format("F12.6")
|
||
col.description="1 sigma counts error; 0.6-2.3 keV (ML_CTS_ERR_2)"
|
||
|
||
col = table2.get_column('ML_CTS_ERR_3') # 28
|
||
col.name="e_MLCts3"
|
||
col.set_format("F12.6")
|
||
col.description="1 sigma counts error; 2.3-5 keV (ML_CTS_ERR_3)"
|
||
|
||
col = table2.get_column('ML_CTS_ERR_4') # 29
|
||
col.name="e_MLCts4"
|
||
col.set_format("F12.6")
|
||
col.description="1 sigma counts error; 5-8 keV (ML_CTS_ERR_4)"
|
||
|
||
col = table2.get_column('ML_FLUX_0') # 30
|
||
col.name="MLFlux0"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.3-2.3 keV (ML_FLUX_0)"
|
||
|
||
col = table2.get_column('ML_FLUX_1') # 31
|
||
col.name="MLFlux1"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.3-0.6 keV (ML_FLUX_1)"
|
||
|
||
col = table2.get_column('ML_FLUX_2') # 32
|
||
col.name="MLFlux2"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 0.6-2.3 keV (ML_FLUX_2)"
|
||
|
||
col = table2.get_column('ML_FLUX_3') # 33
|
||
col.name="MLFlux3"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 2.3-5 keV (ML_FLUX_3)"
|
||
|
||
col = table2.get_column('ML_FLUX_4') # 34
|
||
col.name="MLFlux4"
|
||
col.set_format("E12.6")
|
||
col.description="Source flux converted from count rate; 5-8 keV (ML_FLUX_4)"
|
||
|
||
col = table2.get_column('ML_FLUX_ERR_0') # 35
|
||
col.name="e_MLFlux0"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.3-2.3 keV (ML_FLUX_ERR_0)"
|
||
|
||
col = table2.get_column('ML_FLUX_ERR_1') # 36
|
||
col.name="e_MLFlux1"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.3-0.6 keV (ML_FLUX_ERR_1)"
|
||
|
||
col = table2.get_column('ML_FLUX_ERR_2') # 37
|
||
col.name="e_MLFlux2"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 0.6-2.3 keV (ML_FLUX_ERR_2)"
|
||
|
||
col = table2.get_column('ML_FLUX_ERR_3') # 38
|
||
col.name="e_MLFlux3"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 2.3-5 keV (ML_FLUX_ERR_3)"
|
||
|
||
col = table2.get_column('ML_FLUX_ERR_4') # 39
|
||
col.name="e_MLFlux4"
|
||
col.set_format("E12.6")
|
||
col.description="1 sigma flux error; 5-8 keV (ML_FLUX_ERR_4)"
|
||
|
||
col = table2.get_column('ML_EXP_0') # 40
|
||
col.name="MLExp0"
|
||
col.set_format("E10.6")
|
||
col.description="Vignetted exposure value; 0.3-2.3 keV (ML_EXP_0)"
|
||
|
||
col = table2.get_column('ML_EXP_1') # 41
|
||
col.name="MLExp1"
|
||
col.set_format("E10.6")
|
||
col.description="Vignetted exposure value; 0.3-0.6 keV (ML_EXP_1)"
|
||
|
||
col = table2.get_column('ML_EXP_2') # 42
|
||
col.name="MLExp2"
|
||
col.set_format("E10.6")
|
||
col.description="Vignetted exposure value; 0.6-2.3 keV (ML_EXP_2)"
|
||
|
||
col = table2.get_column('ML_EXP_3') # 43
|
||
col.name="MLExp3"
|
||
col.set_format("E10.6")
|
||
col.description="Vignetted exposure value; 2.3-5 keV (ML_EXP_3)"
|
||
|
||
col = table2.get_column('ML_EXP_4') # 44
|
||
col.name="MLExp4"
|
||
col.set_format("E10.6")
|
||
col.description="Vignetted exposure value; 5-8 keV (ML_EXP_4)"
|
||
|
||
col = table2.get_column('ML_BKG_0') # 45
|
||
col.name="MLBkg0"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.3-2.3 keV (ML_BKG_0)"
|
||
|
||
col = table2.get_column('ML_BKG_1') # 46
|
||
col.name="MLBkg1"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.3-0.6 keV (ML_BKG_1)"
|
||
|
||
col = table2.get_column('ML_BKG_2') # 47
|
||
col.name="MLBkg2"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 0.6-2.3 keV (ML_BKG_2)"
|
||
|
||
col = table2.get_column('ML_BKG_3') # 48
|
||
col.name="MLBkg3"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 2.3-5 keV (ML_BKG_3)"
|
||
|
||
col = table2.get_column('ML_BKG_4') # 49
|
||
col.name="MLBkg4"
|
||
col.set_format("F12.6")
|
||
col.description="Background at the source position; 5-8 keV (ML_BKG_4)"
|
||
|
||
col = table2.get_column('CONF') # 50
|
||
col.name="Conf"
|
||
col.set_format("I1")
|
||
col.description="True if source is located within 60 arcsec from another source with 0.3-2.3 keV flux > 1E−14 erg/s/cm**2 (CONF)"
|
||
|
||
tablemaker.writeCDSTables()
|
||
|
||
# Customize ReadMe output
|
||
|
||
tablemaker.title = "eUDS: The SRG/eROSITA X-ray Survey of the UKIDSS Ultra Deep Survey Field. Catalogue of Sources."
|
||
tablemaker.author = 'Krivonos R.'
|
||
tablemaker.authors="Gilfanov M., Medvedev P., Sazonov S., Sunyaev R."
|
||
tablemaker.date = 2024
|
||
tablemaker.bibcode = "2024MNRAS.528.1264K"
|
||
tablemaker.keywords = "catalogues - surveys - X-ray: general"
|
||
tablemaker.abstract = "The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) spacecraft observed the field of the UKIDSS Ultra-Deep Survey (UDS) in August-September 2019, during its flight to Sun-Earth L2 point. The resulting eROSITA UDS (or eUDS) survey was thus the first eROSITA X-ray imaging survey, which demonstrated the capability of the telescope to perform uniform observations of large sky areas. With a moderate single-camera exposure of 150 ks, eUDS covered ∼5 deg^2^ with the limiting flux ranging between 4*10^-15^ and 5*10^-14^erg/cm^2^/s in the 0.3-2.3 keV band. We present a catalogue of 647 sources detected at likelihood >10 (∼4sigma) during the eUDS. The catalogue provides information on the source fluxes in the main energy band 0.3-2.3 keV and forced photometry in a number of bands between 0.3 and 8 keV. Using the deeper 4XMM-DR12 catalogue, we have identified 22 strongly variable objects that have brightened or faded by at least a factor of ten during the eROSITA observations compared to previous observations by XMM-Newton. We also provide a catalogue of 22 sources detected by eROSITA in the hard energy band of 2.3-5 keV."
|
||
tablemaker.more_description = "The catalogue (fits/eUDS.fits) contains 647 sources detected in the 0.3-2.3 keV band using eSASS adopting a detection likelihood threshold of 10. The catalogue provides information on the source fluxes in the main energy band 0: 0.3-2.3 keV and forced photometry in 1: 0.3-0.6, 2: 0.6-2.3, 3: 2.3-5.0 and 4: 5.0-8.0 keV bands. The catalogue of forced PSF-fitting fluxes (fits/eUDS_4XMM-DR12.fits) contains 3603 XMM-Newton sources from 4XMM-DR12 catalogue with the eUDS exposure of more than 100 s. The catalogue provides information on the source forced photometry in the energy bands 0: 0.3-2.3, 1: 0.3-0.6, 2: 0.6-2.3, 3: 2.3-5.0 and 4: 5.0-8.0 keV. To warn about the potential impact of spatial confusion with a nearby bright source, we added a confusion flag (see original paper for details)."
|
||
|
||
tablemaker.putRef("J/A+A/661/A1","The eFEDS X-ray catalogs (Brunner+, 2022)")
|
||
tablemaker.putRef("J/A+A/661/A38","SRG/ART-XC 1st year all-sky X-ray survey (Pavlinsky+, 2022)")
|
||
tablemaker.putRef("https://www.srg.cosmos.ru/eUDS","eUDS catalog")
|
||
#tablemaker.makeReadMe()
|
||
with open("ReadMe.tmp","w") as fd:
|
||
tablemaker.makeReadMe(out=fd)
|
||
|
||
make_euds_cds(infile1="../uds/products/eUDS.fits",outfile1='table1.dat',
|
||
infile2="../uds/products/eUDS_4XMM-DR12.fits",outfile2='table2.dat')
|