asotr_flight/bin/step_response.py

295 lines
13 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import matplotlib.pyplot as plt
import sys
from importlib import reload
sys.path.append('./')
import asotr
reload(asotr)
import matplotlib.pyplot as plt
from matplotlib import dates
import pandas as pd
from datetime import datetime
asotr_kit = 1
# fname = f'../python_cyclo/data/asotr0{asotr_kit}_data_T.csv'
fname = f'../data/asotr/asotr0{asotr_kit}_data_T.csv'
dateparse = lambda x: datetime.strptime(x, "%d.%m.%Y %H:%M:%S.%f")
data = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_parser=dateparse)
# date = '20.03.2025'
# period = '1 мин'
# time_begin_orig = date + ' 17:10:11'
# time_begin1 = date + ' 18:10:17'
# time_begin2 = date + ' 19:10:23'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242003.png'
# date = '21.03.2025'
# period = '1 мин'
# time_begin_orig = date + ' 14:00:11'
# time_begin1 = date + ' 15:00:16'
# time_begin2 = date + ' 16:00:16'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242103.png'
# date = '24.03.2025'
# period = '1 сек'
# time_begin_orig = date + ' 19:45:11'
# time_begin1 = date + ' 20:45:13'
# time_begin2 = date + ' 21:45:17'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242403.png'
# interp = {'method': 'polynomial', 'order': 1}
# thermocycle_info = {'date': '01.04.2025',
# 'time_begin': ['01.04.2025 16:27:00', '01.04.2025 18:00:00'],
# 'duration_sec': 92*60, 'type': 'step'}
# cut_step_resp = {'time_step_begin': '01.04.2025 18:53:21', 'step_duration': 25*60}
# data_info = {'data': data, 'device': 'KDI', 'channel': 'ch1', 'period': '1 мин',
# 'find_accuracy': 'seconds'}
# name = f'{thermocycle_info["type"]}_response_{data_info["device"]}_{thermocycle_info["date"].replace(".","")}'
# plot_info = {'title': 'Реакция на ступенчатое воздействие',
# 'ox_dtime_format': "%H:%M:%S", 'legend_pos': ['upper left', 'lower left'],
# 'name_fig': f'{name}.png', 'font': 10}
interp = {'method': 'polynomial', 'order': 1}
data_info_list = []
thermocycle_info_list = []
cut_step_resp_list = []
data_info = {'data': data, 'device': 'летный', 'channel': 'ch1', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '25.04.2025',
'time_begin': ['24.04.2025 22:46:32', '25.04.2025 00:19:33'],
'duration_sec': 92*60, 'type': 'step', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '25.04.2025 01:18:01', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch2', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '25.04.2025',
'time_begin': ['24.04.2025 22:46:32', '25.04.2025 00:19:33'],
'duration_sec': 92*60, 'type': 'step1_to2', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '25.04.2025 01:18:01', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch1', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '25.04.2025',
'time_begin': ['25.04.2025 01:52:34', '25.04.2025 03:25:34'],
'duration_sec': 92*60, 'type': 'impulse', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '25.04.2025 04:24:00', 'step_duration': 15*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch2', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '25.04.2025',
'time_begin': ['25.04.2025 01:52:34', '25.04.2025 03:25:34'],
'duration_sec': 92*60, 'type': 'impulse1_to2', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '25.04.2025 04:24:00', 'step_duration': 20*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch2', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '30.04.2025',
'time_begin': ['29.04.2025 22:02:54', '29.04.2025 23:35:54'],
'duration_sec': 93*60, 'type': 'step', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '30.04.2025 00:36:01', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch1', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '30.04.2025',
'time_begin': ['29.04.2025 22:02:54', '29.04.2025 23:35:54'],
'duration_sec': 93*60, 'type': 'step2_to1', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '30.04.2025 00:36:01', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch2', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '30.04.2025',
'time_begin': ['30.04.2025 01:09:55', '30.04.2025 02:41:54'],
'duration_sec': 93*60, 'type': 'impulse', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '30.04.2025 03:42:00', 'step_duration': 15*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch1', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '30.04.2025',
'time_begin': ['30.04.2025 01:09:55', '30.04.2025 02:41:54'],
'duration_sec': 93*60, 'type': 'impulse2_to1', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '30.04.2025 03:42:00', 'step_duration': 20*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch4', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '02.05.2025',
'time_begin': ['01.05.2025 22:05:30', '01.05.2025 23:38:40'],
'duration_sec': 93*60, 'type': 'step', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '02.05.2025 00:39:00', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch3', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '02.05.2025',
'time_begin': ['01.05.2025 22:05:30', '01.05.2025 23:38:40'],
'duration_sec': 93*60, 'type': 'step4_to3', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '02.05.2025 00:39:00', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch4', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '02.05.2025',
'time_begin': ['02.05.2025 01:12:30', '02.05.2025 02:46:02'],
'duration_sec': 93*60, 'type': 'impulse', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '02.05.2025 03:45:02', 'step_duration': 15*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch3', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '02.05.2025',
'time_begin': ['02.05.2025 01:12:30', '02.05.2025 02:46:02'],
'duration_sec': 93*60, 'type': 'impulse4_to3', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '02.05.2025 03:45:02', 'step_duration': 20*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch3', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '04.05.2025',
'time_begin': ['03.05.2025 22:12:11', '03.05.2025 23:45:10'],
'duration_sec': 93*60, 'type': 'step', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '04.05.2025 00:42:01', 'step_duration': 26*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch4', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '04.05.2025',
'time_begin': ['03.05.2025 22:12:11', '03.05.2025 23:45:10'],
'duration_sec': 93*60, 'type': 'step3_to4', 'type_ru': 'ступенчатое'}
cut_step_resp = {'time_step_begin': '04.05.2025 00:42:01', 'step_duration': 30*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch3', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '04.05.2025',
'time_begin': ['04.05.2025 01:19:10', '04.05.2025 02:52:11'],
'duration_sec': 93*60, 'type': 'impulse', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '04.05.2025 03:48:01', 'step_duration': 15*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
data_info = {'data': data, 'device': 'летный', 'channel': 'ch4', 'period': '1 мин',
'find_accuracy': 'seconds'}
thermocycle_info = {'date': '04.05.2025',
'time_begin': ['04.05.2025 01:19:10', '04.05.2025 02:52:11'],
'duration_sec': 93*60, 'type': 'impulse3_to4', 'type_ru': 'импульсное'}
cut_step_resp = {'time_step_begin': '04.05.2025 03:48:01', 'step_duration': 20*60}
data_info_list.append(data_info)
thermocycle_info_list.append(thermocycle_info)
cut_step_resp_list.append(cut_step_resp)
def get_step_response(data_info, thermocycle_info, cut_step_resp):
name = f'{data_info["channel"]}_{thermocycle_info["type"]}_response_{data_info["device"]}_{thermocycle_info["date"].replace(".","")}'
plot_info = {'title': 'Реакция на ' + thermocycle_info['type_ru'] + ' воздействие',
'ox_dtime_format': "%H:%M:%S", 'legend_pos': ['upper left', 'lower left'],
'name_fig': f'../plots/response/{name}.png', 'font': 10}
asotr.plot_step_response_in_thermocycle(data_info, thermocycle_info, interp,
cut_step_resp, plot_info)
step_resp_cut, _, _ = asotr.get_step_response_diff(data_info['data'], thermocycle_info,
channel=data_info['channel'], interp=interp, accuracy=data_info['find_accuracy'],
cut_step_resp=cut_step_resp)
max_ = len(step_resp_cut)
step_resp_cut.to_csv(f'../data/asotr/response/asotr0{asotr_kit}_{data_info["channel"]}_{thermocycle_info["type"]}_{thermocycle_info["date"].replace(".","")}.csv', index=False, sep=';', encoding='utf-8-sig', decimal='.')
title = f'{plot_info["title"]}, канал {data_info["channel"][2]} АСОТР, {data_info["device"]} СПИН-X1-МВН, период опроса {data_info["period"]} ({thermocycle_info["date"]})'
fig = plt.figure(figsize=(10, 6), dpi=200)
fig.suptitle(title, fontsize=plot_info['font'])
ax1 = fig.add_subplot(1,1,1)
ax1.plot(step_resp_cut['timestamp'].iloc[0:max_], step_resp_cut['temp'].iloc[0:max_], '-',
label='реакция на ' + thermocycle_info['type_ru'] + ' воздействие с термоциклом')
date_formatter = dates.DateFormatter(plot_info['ox_dtime_format'])
ax1.xaxis.set_major_formatter(date_formatter)
ax1.legend(loc=plot_info["legend_pos"][0], fontsize=plot_info['font'])
ax1.grid(True)
ax1.tick_params(axis='both', width=1, labelsize=plot_info['font'])
ax1.set_ylabel(r'$T_{norm}$, $^\circ$C', fontsize=plot_info['font'])
ax1.set_xlabel('Время, ЧЧ:MM:CC', fontsize=plot_info['font'])
plt.tight_layout()
fig.savefig(plot_info["name_fig"])
plt.show()
for i, elem in enumerate(data_info_list):
get_step_response(data_info_list[i], thermocycle_info_list[i], cut_step_resp_list[i])