asotr_flight/impulse_response.py

42 lines
1.6 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import sys
from importlib import reload
sys.path.append('/home/danila/Danila/work/MVN/Soft/PID/python/')
import asotr
reload(asotr)
import matplotlib.pyplot as plt
from matplotlib import dates
import pandas as pd
from datetime import datetime
asotr_kit = 1
fname = f'../python_cyclo/data/asotr0{asotr_kit}_data_T.csv'
dateparse = lambda x: datetime.strptime(x, "%d.%m.%Y %H:%M:%S.%f")
data = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_parser=dateparse)
interp = {'method': 'polynomial', 'order': 2}
thermocycle_info = {'date': '14.03.2025', 'type': 'impuse'}
cut_step_resp = {'orig_time_step_begin': '14.03.2025 13:49:32', 'orig_step_duration': 20*60}
data_info = {'data': data, 'channel': 'ch1', 'period': '1 сек', 'find_accuracy': 'seconds'}
name = f'{thermocycle_info["type"]}_response_{thermocycle_info["date"].replace(".","")}'
plot_info = {'title': 'Реакция на импульсное воздействие',
'ox_dtime_format': "%H:%M:%S", 'legend_pos': ['upper right', 'lower left'],
'name_fig': f'{name}.png',
'font': 10}
tstamp_orig_begin = cut_step_resp['orig_time_step_begin']
_, interp_imp_resp = asotr.cut_norm_data(data_info['data'], tstamp_orig_begin,
cut_step_resp['orig_step_duration'], channel='ch1', interp=interp,
accuracy=data_info['find_accuracy'])
interp_imp_resp.to_csv(f'./data/asotr0{asotr_kit}_{name}.csv', index=False, sep=';',
encoding='utf-8-sig', decimal='.')
asotr.plot_imp_response(interp_imp_resp, data_info, plot_info, thermocycle_info)