1. add README for windows. 2. rewrite some python scripts and bat-files according to windows requirements. 3. Create tm_brd_parser.py and tm_wheel_parser.py for demonstration how to work with data in python
This commit is contained in:
114
bin/tm_wheel_parser.py
Normal file
114
bin/tm_wheel_parser.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import pandas as pd
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
from datetime import datetime, timedelta
|
||||
import sys
|
||||
|
||||
tstamp_s = '%d.%m.%Y %H:%M:%S.%f'
|
||||
ox_dtime_format = '%d.%m.%Y %H:%M'
|
||||
|
||||
path_itog_brd_data = '../data/brd_data/'
|
||||
|
||||
|
||||
class PathFileNotFound(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def find_required_files(root_dir, pattern):
|
||||
result = []
|
||||
for dirpath, _, filenames in os.walk(root_dir):
|
||||
for filename in filenames:
|
||||
match = re.match(pattern, filename)
|
||||
if match:
|
||||
result.append(dirpath + '/' + filename)
|
||||
|
||||
if len(result) == 0:
|
||||
raise PathFileNotFound(
|
||||
f'error: check that the path is correct ({root_dir}) or files pattern is correct ({pattern})')
|
||||
|
||||
return sorted(result)
|
||||
|
||||
|
||||
def read_files_into_df(fname_list, column_list, dtype_columns={}):
|
||||
data_itog = pd.DataFrame()
|
||||
epoch_start = pd.Timestamp('2000-01-01')
|
||||
|
||||
for fname in fname_list:
|
||||
data = pd.read_csv(fname, sep=r'\s+', dtype=str)
|
||||
data = data.dropna()
|
||||
data = data[column_list]
|
||||
|
||||
if 'TIME' in column_list:
|
||||
# convert TIME value to human-readable timestamp (sinse epoch 01.01.2000)
|
||||
time = data['TIME'].astype(float)
|
||||
tstamp = epoch_start + pd.to_timedelta(time, unit='s')
|
||||
timestamp = tstamp.dt.strftime(tstamp_s)
|
||||
data['timestamp'] = timestamp
|
||||
|
||||
# clear dataframe rows where time value == 0
|
||||
data['time'] = time
|
||||
data_clear = data.query('time != 0.0')
|
||||
|
||||
data_itog = pd.concat([data_itog, data_clear], ignore_index=True)
|
||||
|
||||
return data_itog
|
||||
|
||||
|
||||
def collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog):
|
||||
patterns_wheel = [r'mvn_wheel_brd01_(.*)', r'mvn_wheel_brd02_(.*)', r'mvn_wheel_brd03_(.*)',
|
||||
r'mvn_wheel_brd04_(.*)']
|
||||
|
||||
for pattern in patterns_wheel:
|
||||
fname = path_itog_brd_data + pattern[:15] + '.csv'
|
||||
try:
|
||||
found_files = find_required_files(root_dir_wheel_data, pattern)
|
||||
data = read_files_into_df(found_files, column_list, dtype_columns={0: float, 1: int})
|
||||
except KeyError as e:
|
||||
print(
|
||||
f'error in collect_tm_brd_wheel_data: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
|
||||
break
|
||||
except Exception as e:
|
||||
print(f'error in collect_tm_brd_wheel_data: {e}')
|
||||
break
|
||||
|
||||
mask = data['STATE'] == '0'
|
||||
data = data[mask]
|
||||
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
|
||||
print('data saved: ' + fname)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python tm_wheel_parser.py /path/to/tm_brd_data/")
|
||||
else:
|
||||
root_dir_wheel_data = sys.argv[1]
|
||||
|
||||
### collect raw tm wheel data into one file for each brd ###
|
||||
print('collect raw tm wheel data into one file for each brd')
|
||||
|
||||
column_list = ['TIME', 'STATE']
|
||||
column_list_itog = ['TIME', 'timestamp', 'STATE']
|
||||
|
||||
collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog)
|
||||
|
||||
## parse and plot wheel csv data
|
||||
print('parse and plot wheel csv data')
|
||||
|
||||
border_clr_wheel = 2
|
||||
fname = path_itog_brd_data + 'mvn_wheel_brd01.csv'
|
||||
wheel_df = pd.read_csv(fname, sep=';')
|
||||
wheel_df['TIME_diff'] = wheel_df['TIME'].diff()
|
||||
median_tdiff = wheel_df['TIME_diff'].median()
|
||||
|
||||
wheel_df_clear = wheel_df[(wheel_df['TIME_diff'] > median_tdiff - border_clr_wheel) &
|
||||
(wheel_df['TIME_diff'] < median_tdiff + border_clr_wheel)]
|
||||
|
||||
wheel_df_peaks = wheel_df[(wheel_df['TIME_diff'] <= median_tdiff - border_clr_wheel) |
|
||||
(wheel_df['TIME_diff'] >= median_tdiff + border_clr_wheel)]
|
||||
|
||||
plt.plot(wheel_df_clear['TIME'], wheel_df_clear['TIME_diff'], '-')
|
||||
plt.plot(wheel_df_peaks['TIME'], wheel_df_peaks['TIME_diff'], '.')
|
||||
plt.show()
|
Reference in New Issue
Block a user