mvn_flight/step_response_diff.py

112 lines
4.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import matplotlib.pyplot as plt
import sys
from importlib import reload
sys.path.append('/home/danila/Danila/work/MVN/Soft/PID/python/')
import asotr
reload(asotr)
import matplotlib.pyplot as plt
from matplotlib import dates
import pandas as pd
from datetime import datetime
asotr_kit = 1
fname = f'../python_cyclo/data/asotr0{asotr_kit}_data_T.csv'
dateparse = lambda x: datetime.strptime(x, "%d.%m.%Y %H:%M:%S.%f")
data = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_parser=dateparse)
# date = '20.03.2025'
# period = '1 мин'
# time_begin_orig = date + ' 17:10:11'
# time_begin1 = date + ' 18:10:17'
# time_begin2 = date + ' 19:10:23'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242003.png'
# date = '21.03.2025'
# period = '1 мин'
# time_begin_orig = date + ' 14:00:11'
# time_begin1 = date + ' 15:00:16'
# time_begin2 = date + ' 16:00:16'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242103.png'
# date = '24.03.2025'
# period = '1 сек'
# time_begin_orig = date + ' 19:45:11'
# time_begin1 = date + ' 20:45:13'
# time_begin2 = date + ' 21:45:17'
# step_begin = time_begin2
# duration = 3600
# accuracy = 'seconds'
# name_fig = 'step_response_KDI_20242403.png'
# interp = {'method': 'polynomial', 'order': 2}
# thermocycle_info = {'date': '24.03.2025', 'time_begin': ['20:45:00', '21:45:11'],
# 'duration_sec': 60*60, 'type': 'step'}
# cut_step_resp = {'time_step_begin': '21:45:11', 'step_duration': 60*60,
# 'orig_time_step_begin': '19:45:11', 'orig_step_duration': 25*60}
# data_info = {'data': data, 'device': 'KDI', 'channel': 'ch1', 'period': '1 мин',
# 'find_accuracy': 'seconds'}
# name = f'{thermocycle_info["type"]}_response_diff_{data_info["device"]}_{thermocycle_info["date"].replace(".","")}'
# plot_info = {'title': 'Реакция на ступенчатое воздействие',
# 'ox_dtime_format': "%H:%M:%S", 'legend_pos': ['upper left', 'lower left'],
# 'name_fig': f'{name}.png', 'font': 10}
interp = {'method': 'polynomial', 'order': 2}
thermocycle_info = {'date': '01.04.2025',
'time_begin': ['01.04.2025 16:27:00', '01.04.2025 18:00:00'],
'duration_sec': 92*60, 'type': 'step'}
cut_step_resp = {'time_step_begin': '01.04.2025 18:53:21', 'step_duration': 24*60,
'orig_time_step_begin': '01.04.2025 15:22:10', 'orig_step_duration': 24*60}
data_info = {'data': data, 'channel': 'ch1', 'period': '1 мин',
'find_accuracy': 'seconds'}
plot_info = {'title': 'Реакция на ступенч. воздейств.',
'ox_dtime_format': "%H:%M:%S", 'legend_pos': ['lower right', 'lower left'],
'name_fig': 'step_response_diff_KDI_20240401.png', 'font': 10}
step_resp_cut, _, _ = asotr.get_step_response_diff(data_info['data'], thermocycle_info,
channel=data_info['channel'], interp=interp, accuracy=data_info['find_accuracy'],
cut_step_resp=cut_step_resp)
tstamp_orig_begin = cut_step_resp['orig_time_step_begin']
_, interp_step_resp = asotr.cut_norm_data(data_info['data'], tstamp_orig_begin,
cut_step_resp['orig_step_duration'], channel='ch1', interp=interp,
accuracy=data_info['find_accuracy'])
max_ = min(len(interp_step_resp), len(step_resp_cut))
interp_step_resp.to_csv(f'./data/asotr0{asotr_kit}_{thermocycle_info["type"]}_{thermocycle_info["date"].replace(".","")}.csv', index=False, sep=';', encoding='utf-8-sig', decimal='.')
title = f'{plot_info["title"]}, канал {data_info["channel"][2]} АСОТР КДИ СПИН-X1-МВН, период опроса {data_info["period"]} ({thermocycle_info["date"]})'
fig = plt.figure(figsize=(6, 6), dpi=200)
fig.suptitle(title, fontsize=plot_info['font'])
ax1 = fig.add_subplot(1,1,1)
ax1.plot(step_resp_cut['timestamp'].iloc[0:max_], step_resp_cut['temp'].iloc[0:max_], '--',
label='реакция на ступенчатое воздействие с термоциклом')
ax1.plot(step_resp_cut['timestamp'].iloc[0:max_], interp_step_resp['temp'].iloc[0:max_],
label='реакция на ступенчатое воздействие')
date_formatter = dates.DateFormatter(plot_info['ox_dtime_format'])
ax1.xaxis.set_major_formatter(date_formatter)
ax1.legend(loc=plot_info["legend_pos"][0], fontsize=plot_info['font'])
ax1.grid(True)
ax1.tick_params(axis='both', width=1, labelsize=plot_info['font'])
ax1.set_ylabel(r'$T_{norm}$, $^\circ$C', fontsize=plot_info['font'])
ax1.set_xlabel('Время', fontsize=plot_info['font'])
plt.tight_layout()
fig.savefig(plot_info["name_fig"])
plt.show()