mvn_flight/bin/brd_wheel_1Hz_parser.py
2025-06-09 14:37:23 +03:00

141 lines
5.0 KiB
Python

import pandas as pd
import os
import re
from pathlib import Path
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
tstamp_s = '%d.%m.%Y %H:%M:%S.%f'
ox_dtime_format = '%d.%m.%Y %H:%M'
path_itog_brd_data = '../data/brd_data/'
class PathFileNotFound(Exception):
pass
def find_required_files(root_dir, pattern):
result = []
for dirpath, _, filenames in os.walk(root_dir):
for filename in filenames:
match = re.match(pattern, filename)
if match:
result.append(dirpath + '/' + filename)
if len(result) == 0:
raise PathFileNotFound(f'error: check that the path is correct ({root_dir}) or files pattern is correct ({pattern})')
return sorted(result)
def read_files_into_df(fname_list, column_list, dtype_columns={}):
data_itog = pd.DataFrame()
epoch_start = pd.Timestamp('2000-01-01')
for fname in fname_list:
data = pd.read_csv(fname, sep=r'\s+', dtype=str)
data = data.dropna()
data = data[column_list]
if 'TIME' in column_list:
# convert TIME value to human-readable timestamp (sinse epoch 01.01.2000)
time = data['TIME'].astype(float)
tstamp = epoch_start + pd.to_timedelta(time, unit='s')
timestamp = tstamp.dt.strftime(tstamp_s)
data['timestamp'] = timestamp
# clear dataframe rows where time value == 0
data['time'] = time
data_clear = data.query('time != 0.0')
data_itog = pd.concat([data_itog, data_clear], ignore_index=True)
return data_itog
def collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog):
patterns_tm = [r'mvn_tm_brd01_(.*)', r'mvn_tm_brd02_(.*)', r'mvn_tm_brd03_(.*)',
r'mvn_tm_brd04_(.*)']
for pattern in patterns_tm:
fname = path_itog_brd_data + pattern[:12] + '.csv'
try:
found_files = find_required_files(root_dir_tm_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={11: float})
except KeyError as e:
print(f'error in collect_tm_brd_files: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_files: {e}')
break
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
def collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog):
patterns_wheel = [r'mvn_wheel_brd01_(.*)', r'mvn_wheel_brd02_(.*)', r'mvn_wheel_brd03_(.*)',
r'mvn_wheel_brd04_(.*)']
for pattern in patterns_wheel:
fname = path_itog_brd_data + pattern[:15] + '.csv'
try:
found_files = find_required_files(root_dir_wheel_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={0: float, 1: int})
except KeyError as e:
print(f'error in collect_tm_brd_wheel_data: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_wheel_data: {e}')
break
mask = data['STATE'] == '0'
data = data[mask]
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
### collect raw tm brd data into one file for each brd ###
root_dir_tm_data = '/home/danila/Danila/work/MVN/flight/brd_data/arch_for_MB/archive_tm_data_txt/'
column_list = ['TIME', 'PER_1Hz', 'ST_HV']
column_list_itog = ['TIME', 'timestamp', 'PER_1Hz', 'ST_HV']
collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog)
### collect raw tm wheel data into one file for each brd ###
root_dir_wheel_data = '/home/danila/Danila/work/MVN/flight/brd_data/arch_for_MB/archive_wheel_data_txt/'
column_list = ['TIME', 'STATE']
column_list_itog = ['TIME', 'timestamp', 'STATE']
collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog)
## plot 'evolution' 1 Hz from tm brd data
fname = path_itog_brd_data + 'mvn_tm_brd01.csv'
dateparse = lambda x: datetime.strptime(x, tstamp_s)
df = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_parser=dateparse)
plt.plot(df['timestamp'], df['PER_1Hz'], '.')
plt.show()
## parse and plot wheel csv data
border_clr_wheel = 2
fname = path_itog_brd_data + 'mvn_wheel_brd01.csv'
wheel_df = pd.read_csv(fname, sep=';')
wheel_df['TIME_diff'] = wheel_df['TIME'].diff()
median_tdiff = wheel_df['TIME_diff'].median()
wheel_df_clear = wheel_df[(wheel_df['TIME_diff'] > median_tdiff - border_clr_wheel) &
(wheel_df['TIME_diff'] < median_tdiff + border_clr_wheel)]
wheel_df_peaks = wheel_df[(wheel_df['TIME_diff'] <= median_tdiff - border_clr_wheel) |
(wheel_df['TIME_diff'] >= median_tdiff + border_clr_wheel)]
plt.plot(wheel_df_clear['TIME'], wheel_df_clear['TIME_diff'])
plt.show()