generated from erosita/uds
minor
This commit is contained in:
@@ -25,7 +25,6 @@ from astropy.stats import sigma_clipped_stats
|
||||
from scipy.stats import norm
|
||||
from scipy.stats import describe
|
||||
from scipy.stats import sem
|
||||
|
||||
import subprocess
|
||||
|
||||
from numpy import absolute
|
||||
@@ -77,6 +76,53 @@ ebands0={'B01':[0.0,0.0],
|
||||
'B21':[0.0,0.0],
|
||||
}
|
||||
|
||||
"""
|
||||
ebands_sim={'B01':[[],[]],
|
||||
'B02':[[],[]],
|
||||
'B03':[[],[]],
|
||||
'B04':[[],[]],
|
||||
'B05':[[],[]],
|
||||
'B06':[[],[]],
|
||||
'B07':[[],[]],
|
||||
'B08':[[],[]],
|
||||
'B09':[[],[]],
|
||||
'B10':[[],[]],
|
||||
'B11':[[],[]],
|
||||
'B12':[[],[]],
|
||||
'B13':[[],[]],
|
||||
'B14':[[],[]],
|
||||
'B15':[[],[]],
|
||||
'B16':[[],[]],
|
||||
'B17':[[],[]],
|
||||
'B18':[[],[]],
|
||||
'B19':[[],[]],
|
||||
'B20':[[],[]],
|
||||
'B21':[[],[]],
|
||||
}
|
||||
"""
|
||||
ebands_sim={'B01':[],
|
||||
'B02':[],
|
||||
'B03':[],
|
||||
'B04':[],
|
||||
'B05':[],
|
||||
'B06':[],
|
||||
'B07':[],
|
||||
'B08':[],
|
||||
'B09':[],
|
||||
'B10':[],
|
||||
'B11':[],
|
||||
'B12':[],
|
||||
'B13':[],
|
||||
'B14':[],
|
||||
'B15':[],
|
||||
'B16':[],
|
||||
'B17':[],
|
||||
'B18':[],
|
||||
'B19':[],
|
||||
'B20':[],
|
||||
'B21':[],
|
||||
}
|
||||
|
||||
|
||||
#skey='Geminga'
|
||||
if len(sys.argv) > 1:
|
||||
@@ -88,55 +134,61 @@ else:
|
||||
if not os.path.exists(specdir):
|
||||
os.makedirs(specdir)
|
||||
|
||||
with open(proddir+'detcnts.B21.ignored_rev.resid.pkl', 'rb') as fp:
|
||||
ignored_rev = pickle.load(fp)
|
||||
print(ignored_rev)
|
||||
|
||||
ign=ignored_rev.tolist()
|
||||
sys.exit()
|
||||
nsim=1000
|
||||
|
||||
for skey in skeys:
|
||||
if not skey in skyreg.keys():
|
||||
print("{} not found in {}".format(skey,list(skyreg.keys())))
|
||||
sys.exit()
|
||||
for enkey in ebands0.keys():
|
||||
bkg_fn="detcnts.{}.BKG.resid.fits".format(enkey,inkey)
|
||||
syserr, bkg_sem = get_syserror(proddir+bkg_fn)
|
||||
|
||||
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
|
||||
d = fits.getdata(proddir+fn)
|
||||
df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
|
||||
#print(df.columns)
|
||||
|
||||
df = df.query('LON > {} & LON < {} & LAT > {} & LAT < {}'.format(skyreg[skey]['lon'] - skyreg[skey]['wlon']/2,
|
||||
skyreg[skey]['lon'] + skyreg[skey]['wlon']/2,
|
||||
skyreg[skey]['lat'] - skyreg[skey]['wlat']/2,
|
||||
skyreg[skey]['lat'] + skyreg[skey]['wlat']/2))
|
||||
#df = df.query("REV == @ign")
|
||||
|
||||
#print("Number of ScWs: {}".format(df.shape[0]))
|
||||
|
||||
df = df.query("LON > {} & LON < {} & LAT > {} & LAT < {} & REV != @ign".format(
|
||||
skyreg[skey]['lon'] - skyreg[skey]['wlon']/2,
|
||||
skyreg[skey]['lon'] + skyreg[skey]['wlon']/2,
|
||||
skyreg[skey]['lat'] - skyreg[skey]['wlat']/2,
|
||||
skyreg[skey]['lat'] + skyreg[skey]['wlat']/2)
|
||||
)
|
||||
|
||||
|
||||
t = Table.from_pandas(df)
|
||||
t.write("{}fits/{}.{}.fits".format(specdir,skey,enkey),overwrite=True)
|
||||
|
||||
texp = np.array(df['TEXP'])
|
||||
print("{} Number of ScWs: {}, {:.1f} Ms".format(skey,df.shape[0],np.sum(texp)/1e6))
|
||||
if not (df.shape[0]>0):
|
||||
continue
|
||||
|
||||
#plt.scatter(df['LON'],df['LAT'])
|
||||
#plt.show()
|
||||
|
||||
grxe = np.array(df['GRXE'])
|
||||
grxe_err = np.array(df['GRXE_ERR'])
|
||||
|
||||
perc = np.percentile(grxe_err, grxe_err_cut, axis=0, keepdims=False)
|
||||
print("{} {}: {}% cut of GRXE ERR: {:.2f} mCrab".format(skey,enkey,grxe_err_cut,perc))
|
||||
idx=np.where(grxe_err < perc)
|
||||
grxe=grxe[idx]
|
||||
grxe_err=grxe_err[idx]
|
||||
|
||||
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=10, return_bounds=True)
|
||||
filtered_grxe = filtered_data[0]
|
||||
filtered_min = filtered_data[1]
|
||||
filtered_max = filtered_data[2]
|
||||
|
||||
#print("length orig: {} taken: {} filtered: {}".format(len(grxe),len(grxe[filtered_grxe.mask==False]),len(grxe[filtered_grxe.mask==True])))
|
||||
|
||||
sg_mean, sg_med, sg_std = sigma_clipped_stats(grxe, sigma=sigma, maxiters=10)
|
||||
sg_sem = sem(grxe[filtered_grxe.mask==False])
|
||||
print("{}: mean {:.2f} med {:.2f} std {:.2f} sem {:.2f} N={}".format(enkey, sg_mean, sg_med, sg_std, sg_sem, len(grxe[filtered_grxe.mask==False])))
|
||||
|
||||
#sg_sem*=1.5
|
||||
if(sg_mean<0.0):
|
||||
sg_mean=1e-6
|
||||
#sg_sem*=2
|
||||
|
||||
print("*** Data frame size {} ***".format(df.size))
|
||||
sg_mean,sg_sem = get_spec(df, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey)
|
||||
ebands0[enkey]=[sg_mean,sg_sem]
|
||||
|
||||
nsel = int(df.shape[0]/10)
|
||||
for n in range(nsim):
|
||||
df0=df.sample(nsel)
|
||||
sg_mean,sg_sem = get_spec(df0, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey)
|
||||
ebands_sim[enkey].append(sg_mean)
|
||||
#ebands_sim[enkey][1].append(sg_sem)
|
||||
|
||||
|
||||
|
||||
if(plotme):
|
||||
k=1.2
|
||||
plt.hist(grxe, bins=n_bins, range=[filtered_min*k, filtered_max*k])
|
||||
@@ -149,12 +201,53 @@ for skey in skeys:
|
||||
plt.xlabel("mCrab")
|
||||
plt.show()
|
||||
|
||||
###
|
||||
fspec="{}{}.spec".format(specdir,skey)
|
||||
with open(fspec, 'w') as fp:
|
||||
for enkey in ebands0.keys():
|
||||
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
|
||||
|
||||
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
|
||||
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
|
||||
|
||||
###
|
||||
|
||||
|
||||
|
||||
fspec="{}{}.sim.spec".format(specdir,skey)
|
||||
with open(fspec, 'w') as fp:
|
||||
for enkey in ebands_sim.keys():
|
||||
data=ebands_sim[enkey]
|
||||
#print(type(data))
|
||||
|
||||
(mu, sg) = norm.fit(data)
|
||||
#n, bins, patches = plt.hist(data, 60, density=True, facecolor='green', alpha=0.75)
|
||||
|
||||
if(plotme):
|
||||
|
||||
# add a 'best fit' line
|
||||
y = norm.pdf( bins, mu, sg)
|
||||
l = plt.plot(bins, y, 'r--', linewidth=2)
|
||||
|
||||
#plot
|
||||
plt.xlabel('Flux')
|
||||
plt.ylabel('Probability')
|
||||
#plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu, sg))
|
||||
plt.title("{} {:.2f} {:.2f}".format(enkey, mu, sg))
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
print(mu,sg)
|
||||
|
||||
filtered_data = sigma_clip(data, sigma=sigma, maxiters=10, return_bounds=True)
|
||||
filtered_arr=filtered_data[0]
|
||||
filtered_min=filtered_data[1]
|
||||
filtered_max=filtered_data[2]
|
||||
sg_mean, sg_med, sg_std = sigma_clipped_stats(data, sigma=sigma, maxiters=10)
|
||||
sg_sem = sem(data)
|
||||
|
||||
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],sg_mean,sg_std))
|
||||
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
|
||||
|
||||
|
||||
try:
|
||||
for remfile in ["cols","cols1","cols2","header",]:
|
||||
os.remove(remfile)
|
||||
|
Reference in New Issue
Block a user