This commit is contained in:
2024-11-01 14:56:46 +03:00
parent 2dc9aa6a8d
commit 908e25b200
51 changed files with 338 additions and 432 deletions

View File

@@ -64,7 +64,7 @@ with open(ignored_rev_file, 'rb') as fp:
ign=ignored_rev.tolist()
hdulist = fits.open(datadir+modelrxte)
hdulist = fits.open(modelsdir+modelrxte)
w = wcs.WCS(hdulist[0].header)
smap =hdulist[0].data
@@ -72,7 +72,7 @@ sx=int(hdulist[0].header['NAXIS1'])
sy=int(hdulist[0].header['NAXIS2'])
# fill AITOF map indexes
# Already done in 02_grxe_resid.py
# -- Already done in 02_grxe_resid.py
"""
ds9x=[]
ds9y=[]
@@ -136,23 +136,8 @@ for i in range(sx):
if (df0.shape[0] < nscw_min):
continue
#print("*** *** REV *** ***")
#print(df0["REV"])
# check coordinates
#print("***",i+1,j+1,lon,lat,smap[j][i])
#for i0,row0 in df0.iterrows():
# print(row0['LON'],row0['LAT'],row0['GRXE'])
sg_mean,sg_sem = get_spec(df0, sigma=sigma, grxe_err_cut=grxe_err_cut, enkey=enkey, nscw_min=nscw_min)
nsel = int(df0.shape[0]*simfrac/100)
#print("nsel=",nsel,df0.shape[0])
for n in range(nsim):
df1=df0.sample(nsel)
sg_mean1,sg_sem1 = get_spec(df1, grxe_err_cut=grxe_err_cut, enkey=enkey, nscw_min=nscw_min)
mean_sim[dkey].append(sg_mean1)
sg_mean,sg_sem,skew_val,skew_err = get_spec(df0, sigma=4, grxe_err_cut=grxe_err_cut, enkey=enkey, plotme=False, bootstrap=False, gaussfit=True)
#print('sg_sem',sg_sem)
@@ -161,19 +146,9 @@ for i in range(sx):
sign_map[j][i] = sg_mean/sg_sem
cnt_map[j][i] = df0.shape[0]
"""
obsid_map[dkey] = obsid
grxe_map[dkey] = grxe
grxe_err_map[dkey] = grxe_err
"""
""" Filter by error map """
# Calculate the percentiles across the x and y dimension
perc = np.percentile(sem_map, sem_cut, axis=(0, 1), keepdims=False)
print("{} {}: {}% cut of SEM map: {:.2f} mCrab".format(key,enkey,sem_cut,perc))
@@ -184,10 +159,6 @@ sem_map[idx]=0.0
cnt_map[idx]=0
sign_map[idx]=0.0
#mean_sim_map[idx]=0.0
#error_sim_map[idx]=0.0
if not os.path.exists(mapsdir):
os.makedirs(mapsdir)
@@ -203,76 +174,8 @@ hdulist.writeto(mapsdir+fn.replace(".fits",".cnt.fits"),overwrite=True)
hdulist[0].data=sign_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sign.fits"),overwrite=True)
print("saving simulations")
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
data=mean_sim[dkey]
#print("{} size {}".format(dkey,len(data)))
if(len(data)>10):
(mu, sg) = norm.fit(data)
mean_sim_map[j][i] = mu
error_sim_map[j][i] = sg
perc = np.percentile(error_sim_map, sem_cut, axis=(0, 1), keepdims=False)
print("{} {}: {}% cut of SEM map: {:.2f} mCrab".format(key,enkey,sem_cut,perc))
idx=np.where(error_sim_map > perc)
print("index size {}".format(len(idx)))
mean_sim_map[idx]=0.0
error_sim_map[idx]=0.0
hdulist[0].data=mean_sim_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sim.mean.fits"),overwrite=True)
hdulist[0].data=error_sim_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sim.error.fits"),overwrite=True)
sys.exit()
print("Prepare data for fine map")
obsid_list=[]
grxe_list=[]
grxe_err_list=[]
for i in range(sx):
for j in range(sy):
""" Use mask """
if not (cnt_map[j][i]>0):
continue
world = w.wcs_pix2world([(i+1,j+1)], 1)
lon = world[0][0]
lat = world[0][1]
if(np.isnan(lon) or np.isnan(lat)):
continue
ds9i=i+1
ds9j=j+1
df0 = df.query('DS9X == {} & DS9Y == {}'.format(ds9i,ds9j))
if (len(df0) <= nscw_min):
continue
dkey="{:04d}{:04d}".format(j,i)
for scw in obsid_map[dkey]:
obsid_list.append(scw.decode("UTF-8"))
for grxe in grxe_map[dkey]:
grxe_list.append(grxe)
for grxe in grxe_err_map[dkey]:
grxe_err_list.append(grxe)
coldefs = fits.ColDefs([
fits.Column(name='OBSID', format='11A', array=obsid_list),
])
fout = fn.replace(".fits",".grxe.fits")
hdu = fits.BinTableHDU.from_columns(coldefs, name='GRXE')
hdu.header['MISSION'] = ('INTEGRAL', '')
#hdu.header['TELESCOP'] = (outkey, '')
hdu.header['INSTITUT'] = ('IKI', 'Affiliation')
hdu.header['AUTHOR'] = ('Roman Krivonos', 'Responsible person')
hdu.header['EMAIL'] = ('krivonos@cosmos.ru', 'E-mail')
#hdu.add_checksum()
print(hdu.columns)
hdu.writeto(proddir+fout, overwrite=True)
with fits.open(proddir+fout, mode='update') as hdus:
hdus[1].add_checksum()