This commit is contained in:
2024-04-17 15:48:08 +03:00
parent ebf991bf58
commit 9841cf5ded
5 changed files with 99 additions and 60 deletions

View File

@@ -26,6 +26,7 @@ from scipy.stats import norm
from scipy.stats import describe
from scipy.stats import sem
import subprocess
from numpy import absolute
from numpy import arange
@@ -52,64 +53,77 @@ ebands0={#'E02':[0.0,0.0],
'E12':[0.0,0.0],}
#skey='Geminga'
skey = sys.argv[1]
if len(sys.argv) > 1:
skeys = [sys.argv[1]]
else:
skeys = list(skyreg.keys())
if not skey in skyreg.keys():
print("{} not found in {}".format(skey,list(skyreg.keys())))
sys.exit()
for enkey in ebands0.keys():
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
d = fits.getdata(proddir+fn)
df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
#print(df.columns)
df = df.query('LON > {} & LON < {} & LAT > {} & LAT < {}'.format(skyreg[skey]['lon'] - skyreg[skey]['wlon']/2,
skyreg[skey]['lon'] + skyreg[skey]['wlon']/2,
skyreg[skey]['lat'] - skyreg[skey]['wlat']/2,
skyreg[skey]['lat'] + skyreg[skey]['wlat']/2))
#print("Number of ScWs: {}".format(df.shape[0]))
if not (df.shape[0]>0):
continue
#plt.scatter(df['LON'],df['LAT'])
#plt.show()
grxe = np.array(df['GRXE'])
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=10, return_bounds=True)
filtered_grxe = filtered_data[0]
filtered_min = filtered_data[1]
filtered_max = filtered_data[2]
#print("length orig: {} taken: {} filtered: {}".format(len(grxe),len(grxe[filtered_grxe.mask==False]),len(grxe[filtered_grxe.mask==True])))
sg_mean, sg_med, sg_std = sigma_clipped_stats(grxe, sigma=sigma, maxiters=10)
sg_sem = sem(grxe[filtered_grxe.mask==False])
print("{}: mean {:.2f} med {:.2f} std {:.2f} sem {:.2f} N={}".format(enkey, sg_mean, sg_med, sg_std, sg_sem, len(grxe[filtered_grxe.mask==False])))
sg_sem*=1.5
if(sg_mean<0.0):
sg_mean=1e-9
sg_sem*=2
ebands0[enkey]=[sg_mean,sg_sem]
if(plotme):
k=1.2
plt.hist(grxe, bins=n_bins, range=[filtered_min*k, filtered_max*k])
plt.hist(grxe[filtered_grxe.mask], bins=n_bins, range=[filtered_min*k, filtered_max*k])
plt.axvline(sg_mean, color="black")
plt.axvline(sg_mean+sg_sem, color="black", linestyle="dashed")
plt.axvline(sg_mean-sg_sem, color="black", linestyle="dashed")
plt.axvline(sg_mean+sg_std, color="blue", linestyle="dashed")
plt.axvline(sg_mean-sg_std, color="blue", linestyle="dashed")
plt.xlabel("mCrab")
plt.show()
if not os.path.exists(specdir):
os.makedirs(specdir)
with open("{}{}.spec".format(specdir,skey), 'w') as fp:
for skey in skeys:
if not skey in skyreg.keys():
print("{} not found in {}".format(skey,list(skyreg.keys())))
sys.exit()
for enkey in ebands0.keys():
fp.write("0 {} {:.2f} {:.2f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
d = fits.getdata(proddir+fn)
df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
#print(df.columns)
df = df.query('LON > {} & LON < {} & LAT > {} & LAT < {}'.format(skyreg[skey]['lon'] - skyreg[skey]['wlon']/2,
skyreg[skey]['lon'] + skyreg[skey]['wlon']/2,
skyreg[skey]['lat'] - skyreg[skey]['wlat']/2,
skyreg[skey]['lat'] + skyreg[skey]['wlat']/2))
#print("Number of ScWs: {}".format(df.shape[0]))
if not (df.shape[0]>0):
continue
#plt.scatter(df['LON'],df['LAT'])
#plt.show()
grxe = np.array(df['GRXE'])
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=10, return_bounds=True)
filtered_grxe = filtered_data[0]
filtered_min = filtered_data[1]
filtered_max = filtered_data[2]
#print("length orig: {} taken: {} filtered: {}".format(len(grxe),len(grxe[filtered_grxe.mask==False]),len(grxe[filtered_grxe.mask==True])))
sg_mean, sg_med, sg_std = sigma_clipped_stats(grxe, sigma=sigma, maxiters=10)
sg_sem = sem(grxe[filtered_grxe.mask==False])
print("{}: mean {:.2f} med {:.2f} std {:.2f} sem {:.2f} N={}".format(enkey, sg_mean, sg_med, sg_std, sg_sem, len(grxe[filtered_grxe.mask==False])))
#sg_sem*=1.5
#if(sg_mean<0.0):
# sg_mean=1e-9
# sg_sem*=2
ebands0[enkey]=[sg_mean,sg_sem]
if(plotme):
k=1.2
plt.hist(grxe, bins=n_bins, range=[filtered_min*k, filtered_max*k])
plt.hist(grxe[filtered_grxe.mask], bins=n_bins, range=[filtered_min*k, filtered_max*k])
plt.axvline(sg_mean, color="black")
plt.axvline(sg_mean+sg_sem, color="black", linestyle="dashed")
plt.axvline(sg_mean-sg_sem, color="black", linestyle="dashed")
plt.axvline(sg_mean+sg_std, color="blue", linestyle="dashed")
plt.axvline(sg_mean-sg_std, color="blue", linestyle="dashed")
plt.xlabel("mCrab")
plt.show()
fspec="{}{}.spec".format(specdir,skey)
with open(fspec, 'w') as fp:
for enkey in ebands0.keys():
fp.write("0 {} {:.2f} {:.2f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
try:
for remfile in ["cols","cols1","cols2","header"]:
os.remove(remfile)
except OSError:
pass