generated from erosita/uds
maps
This commit is contained in:
307
scripts/01_crabmodel.py
Executable file
307
scripts/01_crabmodel.py
Executable file
@@ -0,0 +1,307 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
__author__ = "Roman Krivonos"
|
||||
__copyright__ = "Space Research Institute (IKI)"
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from astropy.io import fits
|
||||
from astropy import wcs
|
||||
import matplotlib.pyplot as plt
|
||||
import math, sys, os
|
||||
import pickle
|
||||
from numpy.polynomial import Polynomial
|
||||
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.linear_model import HuberRegressor
|
||||
from sklearn.linear_model import RANSACRegressor
|
||||
from sklearn.linear_model import TheilSenRegressor
|
||||
from sklearn.model_selection import cross_val_score
|
||||
from sklearn.model_selection import RepeatedKFold
|
||||
|
||||
|
||||
from astropy.coordinates import SkyCoord # High-level coordinates
|
||||
from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames
|
||||
from astropy.coordinates import Angle, Latitude, Longitude # Angles
|
||||
import astropy.units as u
|
||||
|
||||
#from statsmodels.robust.scale import huber
|
||||
from astropy.stats import sigma_clip
|
||||
from numpy import absolute
|
||||
from numpy import arange
|
||||
|
||||
from ridge.utils import *
|
||||
from ridge.config import *
|
||||
|
||||
if not os.path.exists(proddir):
|
||||
os.makedirs(proddir)
|
||||
|
||||
enkey = sys.argv[1]
|
||||
|
||||
sigma=3
|
||||
|
||||
# some static revs/scws to be removed
|
||||
ignore_orbits=[352,834,912,1019,1021,1028,2275,2405,2493]
|
||||
ignore_scws=['066600420020','066600420030','132800350010','090200390010','269500190010']
|
||||
|
||||
fn="detcnts.{}.fits".format(enkey)
|
||||
|
||||
with open(proddir+fn.replace(".fits",".ignored_scw.pkl"), 'rb') as fp:
|
||||
ignored_scw = pickle.load(fp)
|
||||
|
||||
d = fits.getdata(datadir+fn)
|
||||
df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
|
||||
#print(df.columns)
|
||||
|
||||
crab_crd = SkyCoord(crab_ra, crab_dec, frame=FK5(), unit="deg")
|
||||
|
||||
plotme=False
|
||||
|
||||
npix = 50
|
||||
sw = 30.0 # deg
|
||||
pix = sw/npix # pixel size in degrees
|
||||
|
||||
|
||||
mean_map = [[0.0 for i in range(npix)] for j in range(npix)]
|
||||
count_map = [[0 for i in range(npix)] for j in range(npix)]
|
||||
|
||||
|
||||
crabmodel={}
|
||||
rota_arr=[]
|
||||
a0=[]
|
||||
b0=[]
|
||||
a_full0=[]
|
||||
b_full0=[]
|
||||
b_est0=[]
|
||||
err0=[]
|
||||
rev0=[]
|
||||
|
||||
totx=[]
|
||||
toty=[]
|
||||
|
||||
for i,rec in df.iterrows():
|
||||
obsid = rec['OBSID'].decode("utf-8")
|
||||
if(obsid in ignore_scws):
|
||||
print("Remove {}".format(obsid))
|
||||
df.drop(index=i, inplace=True)
|
||||
|
||||
if (obsid in ignored_scw):
|
||||
print("Skip ScW",obsid)
|
||||
continue
|
||||
|
||||
# accumulate full data set
|
||||
for rev in range(revmin,revmax):
|
||||
if(rev in ignore_orbits):
|
||||
continue
|
||||
if(enkey == 'E02'):
|
||||
if(rev > 800):
|
||||
continue
|
||||
if(enkey == 'E03'):
|
||||
if(rev > 800):
|
||||
continue
|
||||
#if(rev > 1000):
|
||||
# continue
|
||||
df0 = df.query('SRC > 0.0 & REV == {} & PHASE > {} & PHASE < {} & CRAB_SEP < {}'.format(rev,phmin,phmax,crab_sep_max))
|
||||
nobs=len(df0)
|
||||
if not (nobs> crab_nmax):
|
||||
continue
|
||||
for n in df0['CRAB_SEP'].values:
|
||||
totx.append(n)
|
||||
for n in df0['SRC'].values:
|
||||
toty.append(n)
|
||||
#if(np.min(df0['SRC'])<1e-3):
|
||||
# print(rev)
|
||||
# sys.exit()
|
||||
|
||||
|
||||
x = np.array(totx)
|
||||
y = np.array(toty)
|
||||
x = x.reshape((-1, 1))
|
||||
model = LinearRegression()
|
||||
#model = TheilSenRegressor()
|
||||
results = evaluate_model(x, y, model)
|
||||
a_full,b_full,err_full = plot_best_fit(x, y, model)
|
||||
if(plotme):
|
||||
plot_ab(x, y, a_full, b_full, err_full, title="REGRESSION")
|
||||
|
||||
# go over orbits
|
||||
poly_x=[]
|
||||
poly_y=[]
|
||||
|
||||
ntotal=0
|
||||
nrev=0
|
||||
for rev in range(revmin,revmax):
|
||||
if(rev in ignore_orbits):
|
||||
continue
|
||||
df0 = df.query('SRC > 0.0 & REV == {} & PHASE > {} & PHASE < {} & CRAB_SEP < {}'.format(rev,phmin,phmax,crab_sep_max))
|
||||
nobs=len(df0)
|
||||
if not (nobs> crab_nmax):
|
||||
continue
|
||||
cen_ra = np.array(df0['RA'].values)
|
||||
cen_dec = np.array(df0['DEC'].values)
|
||||
print("*** Orbit ",rev)
|
||||
x = np.array(df0['CRAB_SEP'].values)
|
||||
y = np.array(df0['SRC'].values)
|
||||
rota_deg = np.array(df0['ROTA'].values)
|
||||
rota = np.array(df0['ROTA'].values) * np.pi / 180. # in radians
|
||||
detx = np.cos(rota)*x
|
||||
dety = np.sin(rota)*x
|
||||
|
||||
for i in range(rota_deg.shape[0]):
|
||||
rota_arr.append(rota_deg[i])
|
||||
|
||||
w = wcs.WCS(naxis=2)
|
||||
w.wcs.crpix = [npix/2, npix/2]
|
||||
w.wcs.cdelt = np.array([-pix, pix])
|
||||
w.wcs.crota = [rota_deg[i], rota_deg[i]]
|
||||
w.wcs.crval = [cen_ra[i], cen_dec[i]]
|
||||
w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
|
||||
#w.wcs.set_pv([(2, 1, 45.0)])
|
||||
|
||||
#header = w.to_header()
|
||||
#hdu = fits.PrimaryHDU(header=header)
|
||||
|
||||
|
||||
pixcrd = w.wcs_world2pix([(crab_ra,crab_dec)], 1)
|
||||
ix=int(np.round(pixcrd[0][0]))
|
||||
iy=int(np.round(pixcrd[0][1]))
|
||||
#print(ix,iy)
|
||||
mean_map[ix][iy] += y[i]
|
||||
count_map[ix][iy] += 1
|
||||
|
||||
x = x.reshape((-1, 1))
|
||||
model = LinearRegression()
|
||||
#model = TheilSenRegressor()
|
||||
results = evaluate_model(x, y, model)
|
||||
a,b,err = plot_best_fit(x, y, model)
|
||||
|
||||
b_est = np.mean(y - a_full*x)
|
||||
|
||||
if(enkey in ['E10','E11','E12',] or a > 0.0):
|
||||
filtered_data = sigma_clip(y, sigma=sigma, maxiters=10, return_bounds=True)
|
||||
filtered_y = filtered_data[0]
|
||||
filtered_min = filtered_data[1]
|
||||
filtered_max = filtered_data[2]
|
||||
b = np.mean(filtered_y)
|
||||
a = 0.0
|
||||
err = np.sqrt(np.sum((b-filtered_y)**2))/len(filtered_y)
|
||||
|
||||
b_est = b
|
||||
a_full = a
|
||||
|
||||
a_full0.append(a_full)
|
||||
b_full0.append(b_full)
|
||||
b_est0.append(b_est)
|
||||
|
||||
#if(b>2.0e-4):
|
||||
# print(rev)
|
||||
# sys.exit()
|
||||
|
||||
a0.append(a)
|
||||
b0.append(b)
|
||||
err0.append(err)
|
||||
rev0.append(rev)
|
||||
|
||||
|
||||
poly_x.append(rev)
|
||||
poly_y.append(b_est)
|
||||
|
||||
if(enkey in ['E04','E05','E06','E07','E08','E09','E10','E11','E12']):
|
||||
crabmodel[rev]={'a':a_full, 'b':b_est, 'err':err}
|
||||
if(plotme):
|
||||
plot_ab(x, y, a_full, b_est, err, title="REGRESSION rev {}".format(rev))
|
||||
|
||||
if(enkey in ['E02', 'E03']):
|
||||
crabmodel[rev]={'a':a, 'b':b, 'err':err}
|
||||
if(plotme):
|
||||
plot_ab(x, y, a, b, err, title="REGRESSION rev {}".format(rev))
|
||||
|
||||
print("ax+b: a={:.2e}, b={:.2e}, std={:.2e}\n".format(a,b,err))
|
||||
ntotal=ntotal+nobs
|
||||
nrev=nrev+1
|
||||
|
||||
print("Orbits: {}, obs: {}".format(nrev,ntotal))
|
||||
|
||||
for i in range(npix):
|
||||
for j in range(npix):
|
||||
if(count_map[i][j]>0):
|
||||
mean_map[i][j]=mean_map[i][j]/count_map[i][j]
|
||||
|
||||
w = wcs.WCS(naxis=2)
|
||||
w.wcs.crpix = [npix/2, npix/2]
|
||||
w.wcs.cdelt = np.array([-pix, pix])
|
||||
w.wcs.crval = [0.0, 0.0]
|
||||
w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
|
||||
|
||||
header = w.to_header()
|
||||
hdu = fits.PrimaryHDU(header=header)
|
||||
|
||||
hdu.data=mean_map
|
||||
hdu.writeto(proddir+fn.replace(".fits",".crab_mean_map.fits"), overwrite=True)
|
||||
hdu.data=count_map
|
||||
hdu.writeto(proddir+fn.replace(".fits",".crab_count_map.fits"), overwrite=True)
|
||||
|
||||
npoly=4
|
||||
if(enkey in ['E11','E12',]):
|
||||
npoly=0
|
||||
|
||||
z = np.polyfit(poly_x, poly_y, npoly)
|
||||
|
||||
p = np.poly1d(z)
|
||||
poly_z=[]
|
||||
for t in poly_x:
|
||||
poly_z.append(p(t))
|
||||
plt.scatter(poly_x, poly_y)
|
||||
plt.plot(poly_x, poly_z, color='r')
|
||||
plt.title("Crab detector count rate evolution")
|
||||
plt.ylabel("Crab count rate cts/s/pix")
|
||||
plt.xlabel("INTEGRAL orbit")
|
||||
#plt.show()
|
||||
plt.savefig(proddir+fn.replace(".fits",".crab_rate.png"))
|
||||
|
||||
indices = sorted(
|
||||
range(len(a0)),
|
||||
key=lambda index: a0[index]
|
||||
)
|
||||
|
||||
coldefs = fits.ColDefs([
|
||||
#fits.Column(name='OBSID', format='11A', array=[obs_id[index] for index in indices]),
|
||||
#fits.Column(name='RA', format='D', unit='deg', array=[ra[index] for index in indices]),
|
||||
#fits.Column(name='DEC', format='D', unit='deg', array=[dec[index] for index in indices]),
|
||||
#fits.Column(name='LON', format='D', unit='deg', array=[lon0[index] for index in indices]),
|
||||
#fits.Column(name='LAT', format='D', unit='deg', array=[lat0[index] for index in indices]),
|
||||
fits.Column(name='REV', format='J', unit='', array=[rev0[index] for index in indices]),
|
||||
#fits.Column(name='MJD', format='D', unit='', array=[mjd0[index] for index in indices]),
|
||||
#fits.Column(name='PHASE', format='D', unit='', array=[phase0[index] for index in indices]),
|
||||
#fits.Column(name='CLEAN', format='D', unit='cts/s', array=[clean0[index] for index in indices]),
|
||||
#fits.Column(name='MODEL', format='D', unit='cts/s', array=[model0[index] for index in indices]),
|
||||
#fits.Column(name='RESID', format='D', unit='cts/s', array=[resid0[index] for index in indices]),
|
||||
fits.Column(name='A', format='D', unit='', array=[a0[index] for index in indices]),
|
||||
fits.Column(name='B', format='D', unit='', array=[b0[index] for index in indices]),
|
||||
fits.Column(name='ERR', format='D', unit='', array=[err0[index] for index in indices]),
|
||||
fits.Column(name='A_FULL', format='D', unit='', array=[a_full0[index] for index in indices]),
|
||||
fits.Column(name='B_FULL', format='D', unit='', array=[b_full0[index] for index in indices]),
|
||||
fits.Column(name='B_EST', format='D', unit='', array=[b_est0[index] for index in indices]),
|
||||
fits.Column(name='B_POLY', format='D', unit='', array=[poly_z[index] for index in indices]),
|
||||
])
|
||||
|
||||
fout = fn.replace(".fits",".crabmodel.fits")
|
||||
hdu = fits.BinTableHDU.from_columns(coldefs, name='GRXE')
|
||||
hdu.header['MISSION'] = ('INTEGRAL', '')
|
||||
hdu.header['TELESCOP'] = ('IBIS', '')
|
||||
hdu.header['INSTITUT'] = ('IKI', 'Affiliation')
|
||||
hdu.header['AUTHOR'] = ('Roman Krivonos', 'Responsible person')
|
||||
hdu.header['EMAIL'] = ('krivonos@cosmos.ru', 'E-mail')
|
||||
#hdu.add_checksum()
|
||||
print(hdu.columns)
|
||||
hdu.writeto(proddir+fout, overwrite=True)
|
||||
|
||||
|
||||
with open(proddir+fn.replace(".fits",".crabmodel.pkl"), 'wb') as fp:
|
||||
pickle.dump([crabmodel, z], fp, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
with open(proddir+fn.replace(".fits",".rota.dat"), 'w') as fp:
|
||||
for i in range(len(rota_arr)):
|
||||
fp.write("{} {}\n".format(i,rota_arr[i]))
|
||||
|
Reference in New Issue
Block a user