more filtering

This commit is contained in:
2024-04-18 16:03:08 +03:00
parent 9841cf5ded
commit d1e1643f8a
7 changed files with 101 additions and 7 deletions

View File

@@ -43,8 +43,9 @@ with open(proddir+fn.replace(".fits",".ignored_rev.pkl"), 'rb') as fp:
with open(proddir+fn.replace(".fits",".crabmodel.pkl"), 'rb') as fp:
crabmodel, z = pickle.load(fp)
p = np.poly1d(z)
crabmodel_keys = list(crabmodel.keys())
#print(crabmodel)
#sys.exit()
crab_rev_max = np.max(list(crabmodel.keys()))
print("Crab is defined untill orbit {}".format(crab_rev_max))
@@ -66,11 +67,13 @@ clean0=[]
model0=[]
resid0=[] # residuals in cts/s
grxe0=[] # mCrab
grxe_err0=[] # mCrab
crab0=[] # Crab count rate
mjd0=[]
a0=[]
b0=[]
err0=[]
model_err0=[]
crab_err0=[]
lon0=[]
lat0=[]
base0=[]
@@ -114,11 +117,22 @@ for i, row in df.iterrows():
a = bgdmodel[orbit]['a']
b = bgdmodel[orbit]['b']
c = bgdmodel[orbit]['c']
# Crab error is defined only for Crab resolutions, so we interpolate between
if(orbit in crabmodel_keys):
crab_err = crabmodel[orbit]['err']
else:
left,right = find_nearest(crabmodel_keys, orbit)
crab_err = np.interp(orbit, [left,right], [crabmodel[left]['err'], crabmodel[right]['err']])
#print()
#print(orbit, left, right)
#print(orbit, 'err', crabmodel[left]['err'], crab_err, crabmodel[right]['err'])
#sys.exit()
err = bgdmodel[orbit]['err']
m = a*row['PHASE']+b
r1 = bgdmodel[orbit]['r1'] # nearest left orbit used for calibration
r2 = bgdmodel[orbit]['r2'] # nearest right orbit used for calibration
c0.append(c)
base0.append(abs(orbit - int(np.min([r1,r2]))))
clean0.append(clean[i])
@@ -126,12 +140,14 @@ for i, row in df.iterrows():
model0.append(m)
resid0.append(clean[i]-m)
grxe0.append(1000*(clean[i]-m)/p(orbit))
grxe_err0.append(1000*np.sqrt(err**2 + crab_err**2)/p(orbit))
crab0.append(p(orbit))
a0.append(a)
b0.append(b)
c0.append(c)
err0.append(err)
model_err0.append(err)
crab_err0.append(crab_err)
phase0.append(row['PHASE'])
rev0.append(orbit)
lon0.append(row['LON'])
@@ -155,13 +171,15 @@ coldefs = fits.ColDefs([
fits.Column(name='PHASE', format='D', unit='', array=[phase0[index] for index in indices]),
fits.Column(name='CLEAN', format='D', unit='cts/s', array=[clean0[index] for index in indices]),
fits.Column(name='MODEL', format='D', unit='cts/s', array=[model0[index] for index in indices]),
fits.Column(name='MODEL_ERR', format='D', unit='', array=[model_err0[index] for index in indices]),
fits.Column(name='RESID', format='D', unit='cts/s', array=[resid0[index] for index in indices]),
fits.Column(name='GRXE', format='D', unit='mCrab', array=[grxe0[index] for index in indices]),
fits.Column(name='GRXE_ERR', format='D', unit='mCrab', array=[grxe_err0[index] for index in indices]),
fits.Column(name='CRAB', format='D', unit='cts/s', array=[crab0[index] for index in indices]),
fits.Column(name='CRAB_ERR', format='D', unit='', array=[crab_err0[index] for index in indices]),
fits.Column(name='A', format='D', unit='', array=[a0[index] for index in indices]),
fits.Column(name='B', format='D', unit='', array=[b0[index] for index in indices]),
fits.Column(name='C', format='D', unit='', array=[c0[index] for index in indices]),
fits.Column(name='ERR', format='D', unit='', array=[err0[index] for index in indices]),
])
fout = fn.replace(".fits",".{}.resid.fits".format(outkey))