generated from erosita/uds
more filtering
This commit is contained in:
parent
9841cf5ded
commit
d1e1643f8a
12
data/xspec/GC06.xcm
Normal file
12
data/xspec/GC06.xcm
Normal file
@ -0,0 +1,12 @@
|
||||
method leven 10 0.01
|
||||
abund angr
|
||||
xsect vern
|
||||
cosmo 70 0 0.73
|
||||
xset delta 0.01
|
||||
systematic 0
|
||||
model atable{../../data/polarmodel.fits} + powerlaw
|
||||
0.73486 1 0 0 3 3
|
||||
2.27115e-09 0.01 0 0 1e+20 1e+24
|
||||
1.23053 0.01 -3 -2 9 10
|
||||
0.0103601 0.01 0 0 1e+20 1e+24
|
||||
bayes off
|
12
data/xspec/GC10.xcm
Normal file
12
data/xspec/GC10.xcm
Normal file
@ -0,0 +1,12 @@
|
||||
method leven 10 0.01
|
||||
abund angr
|
||||
xsect vern
|
||||
cosmo 70 0 0.73
|
||||
xset delta 0.01
|
||||
systematic 0
|
||||
model atable{../../data/polarmodel.fits} + powerlaw
|
||||
0.713934 1 0 0 3 3
|
||||
2.27522e-09 0.01 0 0 1e+20 1e+24
|
||||
1.80029 0.01 -3 -2 9 10
|
||||
0.138919 0.01 0 0 1e+20 1e+24
|
||||
bayes off
|
10
data/xspec/LON+20.xcm
Normal file
10
data/xspec/LON+20.xcm
Normal file
@ -0,0 +1,10 @@
|
||||
method leven 10 0.01
|
||||
abund angr
|
||||
xsect vern
|
||||
cosmo 70 0 0.73
|
||||
xset delta 0.01
|
||||
systematic 0
|
||||
model atable{../../data/polarmodel.fits}
|
||||
0.724678 1 0 0 3 3
|
||||
1.03624e-09 0.01 0 0 1e+20 1e+24
|
||||
bayes off
|
@ -45,6 +45,11 @@ SEM означает standatd error on mean (~RMS/sqrt(n))
|
||||
"""
|
||||
sem_cut=98
|
||||
|
||||
"""
|
||||
Измерение GRXE ((data-model)/crab) со значением ошибки выше этого персентиля будет отброшено
|
||||
"""
|
||||
grxe_err_cut=90
|
||||
|
||||
""" Координаты Краба """
|
||||
crab_ra = 83.6287
|
||||
crab_dec = 22.014
|
||||
|
@ -43,8 +43,9 @@ with open(proddir+fn.replace(".fits",".ignored_rev.pkl"), 'rb') as fp:
|
||||
with open(proddir+fn.replace(".fits",".crabmodel.pkl"), 'rb') as fp:
|
||||
crabmodel, z = pickle.load(fp)
|
||||
p = np.poly1d(z)
|
||||
crabmodel_keys = list(crabmodel.keys())
|
||||
#print(crabmodel)
|
||||
|
||||
#sys.exit()
|
||||
|
||||
crab_rev_max = np.max(list(crabmodel.keys()))
|
||||
print("Crab is defined untill orbit {}".format(crab_rev_max))
|
||||
@ -66,11 +67,13 @@ clean0=[]
|
||||
model0=[]
|
||||
resid0=[] # residuals in cts/s
|
||||
grxe0=[] # mCrab
|
||||
grxe_err0=[] # mCrab
|
||||
crab0=[] # Crab count rate
|
||||
mjd0=[]
|
||||
a0=[]
|
||||
b0=[]
|
||||
err0=[]
|
||||
model_err0=[]
|
||||
crab_err0=[]
|
||||
lon0=[]
|
||||
lat0=[]
|
||||
base0=[]
|
||||
@ -114,11 +117,22 @@ for i, row in df.iterrows():
|
||||
a = bgdmodel[orbit]['a']
|
||||
b = bgdmodel[orbit]['b']
|
||||
c = bgdmodel[orbit]['c']
|
||||
|
||||
# Crab error is defined only for Crab resolutions, so we interpolate between
|
||||
if(orbit in crabmodel_keys):
|
||||
crab_err = crabmodel[orbit]['err']
|
||||
else:
|
||||
left,right = find_nearest(crabmodel_keys, orbit)
|
||||
crab_err = np.interp(orbit, [left,right], [crabmodel[left]['err'], crabmodel[right]['err']])
|
||||
#print()
|
||||
#print(orbit, left, right)
|
||||
#print(orbit, 'err', crabmodel[left]['err'], crab_err, crabmodel[right]['err'])
|
||||
#sys.exit()
|
||||
err = bgdmodel[orbit]['err']
|
||||
m = a*row['PHASE']+b
|
||||
r1 = bgdmodel[orbit]['r1'] # nearest left orbit used for calibration
|
||||
r2 = bgdmodel[orbit]['r2'] # nearest right orbit used for calibration
|
||||
|
||||
|
||||
c0.append(c)
|
||||
base0.append(abs(orbit - int(np.min([r1,r2]))))
|
||||
clean0.append(clean[i])
|
||||
@ -126,12 +140,14 @@ for i, row in df.iterrows():
|
||||
model0.append(m)
|
||||
resid0.append(clean[i]-m)
|
||||
grxe0.append(1000*(clean[i]-m)/p(orbit))
|
||||
grxe_err0.append(1000*np.sqrt(err**2 + crab_err**2)/p(orbit))
|
||||
crab0.append(p(orbit))
|
||||
|
||||
a0.append(a)
|
||||
b0.append(b)
|
||||
c0.append(c)
|
||||
err0.append(err)
|
||||
model_err0.append(err)
|
||||
crab_err0.append(crab_err)
|
||||
phase0.append(row['PHASE'])
|
||||
rev0.append(orbit)
|
||||
lon0.append(row['LON'])
|
||||
@ -155,13 +171,15 @@ coldefs = fits.ColDefs([
|
||||
fits.Column(name='PHASE', format='D', unit='', array=[phase0[index] for index in indices]),
|
||||
fits.Column(name='CLEAN', format='D', unit='cts/s', array=[clean0[index] for index in indices]),
|
||||
fits.Column(name='MODEL', format='D', unit='cts/s', array=[model0[index] for index in indices]),
|
||||
fits.Column(name='MODEL_ERR', format='D', unit='', array=[model_err0[index] for index in indices]),
|
||||
fits.Column(name='RESID', format='D', unit='cts/s', array=[resid0[index] for index in indices]),
|
||||
fits.Column(name='GRXE', format='D', unit='mCrab', array=[grxe0[index] for index in indices]),
|
||||
fits.Column(name='GRXE_ERR', format='D', unit='mCrab', array=[grxe_err0[index] for index in indices]),
|
||||
fits.Column(name='CRAB', format='D', unit='cts/s', array=[crab0[index] for index in indices]),
|
||||
fits.Column(name='CRAB_ERR', format='D', unit='', array=[crab_err0[index] for index in indices]),
|
||||
fits.Column(name='A', format='D', unit='', array=[a0[index] for index in indices]),
|
||||
fits.Column(name='B', format='D', unit='', array=[b0[index] for index in indices]),
|
||||
fits.Column(name='C', format='D', unit='', array=[c0[index] for index in indices]),
|
||||
fits.Column(name='ERR', format='D', unit='', array=[err0[index] for index in indices]),
|
||||
])
|
||||
|
||||
fout = fn.replace(".fits",".{}.resid.fits".format(outkey))
|
||||
|
@ -85,6 +85,13 @@ for skey in skeys:
|
||||
#plt.show()
|
||||
|
||||
grxe = np.array(df['GRXE'])
|
||||
grxe_err = np.array(df['GRXE_ERR'])
|
||||
|
||||
perc = np.percentile(grxe_err, grxe_err_cut, axis=0, keepdims=False)
|
||||
print("{} {}: {}% cut of GRXE ERR: {:.2f} mCrab".format(skey,enkey,sem_cut,perc))
|
||||
idx=np.where(grxe_err < perc)
|
||||
grxe=grxe[idx]
|
||||
grxe_err=grxe_err[idx]
|
||||
|
||||
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=10, return_bounds=True)
|
||||
filtered_grxe = filtered_data[0]
|
||||
@ -99,7 +106,7 @@ for skey in skeys:
|
||||
|
||||
#sg_sem*=1.5
|
||||
#if(sg_mean<0.0):
|
||||
# sg_mean=1e-9
|
||||
# sg_mean=1e-6
|
||||
# sg_sem*=2
|
||||
|
||||
ebands0[enkey]=[sg_mean,sg_sem]
|
||||
@ -119,7 +126,7 @@ for skey in skeys:
|
||||
fspec="{}{}.spec".format(specdir,skey)
|
||||
with open(fspec, 'w') as fp:
|
||||
for enkey in ebands0.keys():
|
||||
fp.write("0 {} {:.2f} {:.2f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
|
||||
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],ebands0[enkey][0],ebands0[enkey][1]))
|
||||
|
||||
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
|
||||
try:
|
||||
|
@ -71,6 +71,7 @@ plt.show()
|
||||
|
||||
rev = np.array(df['REV'])
|
||||
grxe = np.array(df['GRXE'])
|
||||
grxe_err = np.array(df['GRXE_ERR'])
|
||||
|
||||
|
||||
|
||||
@ -86,6 +87,35 @@ sstr = '%-14s mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = %6.4f'
|
||||
n, (smin, smax), sm, sv, ss, sk = describe(grxe)
|
||||
print(sstr % ('sample:', sm, sv, ss, sk))
|
||||
|
||||
# Calculate the percentiles across the x dimension
|
||||
errmax=np.max(grxe_err)
|
||||
perc = np.percentile(grxe_err, grxe_err_cut, axis=0, keepdims=False)
|
||||
print("{} {}: {}% cut of GRXE ERR: {:.2f} mCrab".format(skey,enkey,sem_cut,perc))
|
||||
idx=np.where(grxe_err < perc)
|
||||
|
||||
plt.hist(grxe_err, bins=n_bins, range=[0,errmax], color="red")
|
||||
rev=rev[idx]
|
||||
grxe=grxe[idx]
|
||||
grxe_err=grxe_err[idx]
|
||||
plt.hist(grxe_err, bins=n_bins, range=[0,errmax], color="grey")
|
||||
|
||||
plt.xlabel("GRXE ERROR, mCrab")
|
||||
plt.title("Distribution of errors {}".format(skey))
|
||||
plt.show()
|
||||
|
||||
grxe_sign=np.divide(grxe,grxe_err)
|
||||
plt.hist(grxe_sign, bins=n_bins)
|
||||
plt.xlabel("GRXE S/N")
|
||||
plt.title("Distribution of significance {}".format(skey))
|
||||
plt.show()
|
||||
|
||||
A=np.sum(grxe/grxe_err**2)
|
||||
B=np.sum(1.0/grxe_err**2)
|
||||
wgt_mean=A/B
|
||||
wgt_mean_err=np.sqrt(1.0/B)
|
||||
|
||||
print("Weighted mean: {:.2f}+/-{:.2f} normal mean: {:.2f}".format(wgt_mean,wgt_mean_err,np.mean(grxe)))
|
||||
|
||||
#filtered_grxe = sigma_clip(grxe, sigma=sigma, maxiters=10)
|
||||
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=10, return_bounds=True)
|
||||
filtered_grxe = filtered_data[0]
|
||||
|
Loading…
x
Reference in New Issue
Block a user