#!/usr/bin/env python __author__ = "Roman Krivonos" __copyright__ = "Space Research Institute (IKI)" import numpy as np import pandas as pd from astropy.io import fits from astropy.table import Table, Column from astropy import units as u import matplotlib.pyplot as plt import math, sys, os import pickle from sklearn.linear_model import LinearRegression from sklearn.linear_model import HuberRegressor from sklearn.linear_model import RANSACRegressor from sklearn.linear_model import TheilSenRegressor from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold #from statsmodels.robust.scale import huber from astropy.stats import sigma_clip from astropy.stats import sigma_clipped_stats from scipy.stats import norm from scipy.stats import describe from scipy.stats import sem import subprocess from numpy import absolute from numpy import arange from ridge.utils import * from ridge.config import * inkey="BKG" skey="GRXE-BKG" sigma=3 plotme=False with open(proddir+'detcnts.B21.ignored_rev.resid.pkl', 'rb') as fp: ignored_rev = pickle.load(fp) print("{} orbits ignored".format(len(ignored_rev))) ign=ignored_rev.tolist() enkey="E01" fn="detcnts.{}.{}.resid.fits".format(enkey,inkey) dat = Table.read(proddir+fn, unit_parse_strict='silent') df = dat.to_pandas() print("N={}".format(df.shape[0])) query = "REV != @ign" df = df.query(query) print("{} N={}".format(query, df.shape[0])) t = Table.from_pandas(df) t.write("{}/{}.{}.resid_filtered_rev.fits".format(proddir,inkey,enkey),overwrite=True) sg_mean,sg_sem = get_spec(df, sigma=sigma, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey, plotme=True, fout="{}/{}.{}.resid_filtered_spec.fits".format(proddir,inkey,enkey))