#!/usr/bin/env python __author__ = "Roman Krivonos" __copyright__ = "Space Research Institute (IKI)" import numpy as np import pandas as pd from astropy.io import fits from astropy.table import Table, Column from astropy import units as u import matplotlib.pyplot as plt import math, sys, os import pickle from sklearn.linear_model import LinearRegression from sklearn.linear_model import HuberRegressor from sklearn.linear_model import RANSACRegressor from sklearn.linear_model import TheilSenRegressor from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold #from statsmodels.robust.scale import huber from astropy.stats import sigma_clip from astropy.stats import sigma_clipped_stats from scipy.stats import norm from scipy.stats import describe from scipy.stats import sem import subprocess from numpy import absolute from numpy import arange from ridge.utils import * from ridge.config import * inkey="ALL" sigma=3 plotme=True ebands0={ 'E01':[0.0,0.0], # 25-60 keV 'E14':[0.0,0.0], # 60-80 keV 'E13':[0.0,0.0], # 80-200 keV } if len(sys.argv) > 1: skeys = [sys.argv[1]] else: skeys = list(skyreg.keys()) if not os.path.exists(fluxdir): os.makedirs(fluxdir) with open(ignored_rev_file, 'rb') as fp: ignored_rev = pickle.load(fp) print("{} orbits ignored".format(len(ignored_rev))) ign=ignored_rev.tolist() for skey in skeys: if not skey in skyreg.keys(): print("{} not found in {}".format(skey,list(skyreg.keys()))) sys.exit() # generate array for bootstrap ebands_sim={} for enkey in ebands0.keys(): ebands_sim[enkey] = [] for enkey in ebands0.keys(): #bkg_fn="detcnts.{}.BKG.resid.fits".format(enkey,inkey) #syserr, bkg_sem = get_syserror(proddir+bkg_fn) fn="detcnts.{}.{}.resid.fits".format(enkey,inkey) print("Reading {}".format(proddir+fn)) dat = Table.read(proddir+fn, unit_parse_strict='silent') df = dat.to_pandas() query = "LON > {} & LON < {} & LAT > {} & LAT < {} & REV != @ign".format( skyreg[skey]['lon'] - skyreg[skey]['wlon']/2, skyreg[skey]['lon'] + skyreg[skey]['wlon']/2, skyreg[skey]['lat'] - skyreg[skey]['wlat']/2, skyreg[skey]['lat'] + skyreg[skey]['wlat']/2) df = df.query(query) print("{}, {}: {} N={}".format(skey, enkey, query, df.shape[0])) t = Table.from_pandas(df) t.write("{}fits/{}.{}.fits".format(fluxdir,skey,enkey),overwrite=True) texp = np.array(df['TEXP']) with open("{}fits/{}.{}.livetime".format(fluxdir,skey,enkey), 'w') as fp: fp.write("{} {} ScWs: {} Texp: {:.2f} Ms\n".format(skey,enkey,df.shape[0],np.sum(texp)/1e6)) if not (df.shape[0]>0): continue sg_mean,sg_sem = get_spec(df, sigma=sigma, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey, plotme=plotme) ebands0[enkey]=[sg_mean,sg_sem] nsel = int(df.shape[0]/simfrac) for n in range(nsim): df0=df.sample(nsel) sg_mean,sg_sem = get_spec(df0, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey) ebands_sim[enkey].append(sg_mean) ### fspec="{}{}.dat".format(fluxdir,skey) with open(fspec, 'w') as fp: for enkey in ebands0.keys(): flux=ebands0[enkey][0] err=ebands0[enkey][1] print("[DATA] {}: {} {:.6f} {:.6f}".format(skey,enkey,flux,err)) fp.write("{} {} {} {:.6f} {:.6f}\n".format(skey,enkey,bands[enkey],flux,err)) ### fspec="{}{}.sim.dat".format(fluxdir,skey) with open(fspec, 'w') as fp: for enkey in ebands_sim.keys(): data=ebands_sim[enkey] (mu, sg) = norm.fit(data) fp.write("{} {} {} {:.6f} {:.6f}\n".format(skey,enkey,bands[enkey],mu,sg)) print("[BOOT] {}: {} {:.6f} {:.6f}".format(skey,enkey,mu,sg)) if(plotme): n, bins, patches = plt.hist(data, 60, density=True, facecolor='green', alpha=0.75) # add a 'best fit' line y = norm.pdf(bins, mu, sg) l = plt.plot(bins, y, 'r--', linewidth=2) #plot plt.axvline(mu, color="black") plt.axvline(ebands0[enkey][0], color="black", linestyle="dashed") #plt.axvline(mu+sg_sem, color="black", linestyle="dashed") #plt.axvline(mu-sg_sem, color="black", linestyle="dashed") plt.axvline(mu+sg, color="blue", linestyle="dashed") plt.axvline(mu-sg, color="blue", linestyle="dashed") plt.xlabel('Flux, mCrab') plt.ylabel('Probability') plt.title("[BOOT] {}: {:.2f} {:.2f}".format(enkey, mu, sg)) plt.grid(True) plt.show()