generated from erosita/uds
210 lines
5.4 KiB
Python
Executable File
210 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
__author__ = "Roman Krivonos"
|
|
__copyright__ = "Space Research Institute (IKI)"
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from astropy.io import fits
|
|
from astropy import wcs
|
|
import matplotlib.pyplot as plt
|
|
import math, sys, os
|
|
import pickle
|
|
from numpy.polynomial import Polynomial
|
|
from astropy.table import Table, Column
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
from sklearn.linear_model import HuberRegressor
|
|
from sklearn.linear_model import RANSACRegressor
|
|
from sklearn.linear_model import TheilSenRegressor
|
|
from sklearn.model_selection import cross_val_score
|
|
from sklearn.model_selection import RepeatedKFold
|
|
|
|
|
|
from astropy.coordinates import SkyCoord # High-level coordinates
|
|
from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames
|
|
from astropy.coordinates import Angle, Latitude, Longitude # Angles
|
|
import astropy.units as u
|
|
|
|
#from statsmodels.robust.scale import huber
|
|
from astropy.stats import sigma_clip
|
|
from numpy import absolute
|
|
from numpy import arange
|
|
|
|
from ridge.utils import *
|
|
from ridge.config import *
|
|
|
|
if not os.path.exists(proddir):
|
|
os.makedirs(proddir)
|
|
|
|
#enkey = sys.argv[1]
|
|
enkey='A01'
|
|
inkey="ALL"
|
|
|
|
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
|
|
dat = Table.read(proddir+fn)
|
|
df = dat.to_pandas()
|
|
|
|
with open(proddir+"detcnts.{}.ignored_scw.pkl".format(enkey), 'rb') as fp:
|
|
ignored_scw = pickle.load(fp)
|
|
|
|
sco_crd = SkyCoord(sco_ra, sco_dec, frame=FK5(), unit="deg")
|
|
|
|
plotme=False
|
|
|
|
npix = 50
|
|
sw = 30.0 # deg
|
|
pix = sw/npix # pixel size in degrees
|
|
|
|
|
|
crabmodel={}
|
|
rota_arr=[]
|
|
a0=[]
|
|
b0=[]
|
|
a_full0=[]
|
|
b_full0=[]
|
|
b_est0=[]
|
|
err0=[]
|
|
rev0=[]
|
|
|
|
totx=[]
|
|
toty=[]
|
|
|
|
for i,rec in df.iterrows():
|
|
obsid = rec['OBSID']#.decode("utf-8")
|
|
|
|
if (obsid in ignored_scw):
|
|
print("Skip ScW",obsid)
|
|
continue
|
|
|
|
# accumulate full data set
|
|
for rev in range(revmin,revmax):
|
|
|
|
|
|
df0 = df.query('SRC > 0.0 & REV == {} & PHASE > {} & PHASE < {} & SCO_SEP < {}'.format(rev,phmin,phmax,crab_sep_max))
|
|
nobs=len(df0)
|
|
if not (nobs> crab_nmax):
|
|
continue
|
|
|
|
print(rev,nobs)
|
|
|
|
for n in df0['SCO_SEP'].values:
|
|
totx.append(n)
|
|
|
|
for n in df0['SRC'].values:
|
|
toty.append(n)
|
|
|
|
|
|
x = np.array(totx)
|
|
y = np.array(toty)
|
|
x = x.reshape((-1, 1))
|
|
model = LinearRegression()
|
|
#model = TheilSenRegressor()
|
|
results = evaluate_model(x, y, model)
|
|
a_full,b_full,err_full = plot_best_fit(x, y, model)
|
|
if(plotme):
|
|
plot_ab(x, y, a_full, b_full, err_full, title="REGRESSION")
|
|
|
|
|
|
|
|
# go over orbits
|
|
poly_x=[]
|
|
poly_y=[]
|
|
|
|
ntotal=0
|
|
nrev=0
|
|
for rev in range(revmin,revmax):
|
|
df0 = df.query('SRC > 0.0 & REV == {} & PHASE > {} & PHASE < {} & SCO_SEP < {}'.format(rev,phmin,phmax,crab_sep_max))
|
|
nobs=len(df0)
|
|
if not (nobs> crab_nmax):
|
|
continue
|
|
#cen_ra = np.array(df0['RA'].values)
|
|
#cen_dec = np.array(df0['DEC'].values)
|
|
print("*** Orbit ",rev)
|
|
x = np.array(df0['SCO_SEP'].values)
|
|
y = np.array(df0['SRC'].values)
|
|
|
|
#rota_deg = np.array(df0['ROTA'].values)
|
|
#rota = np.array(df0['ROTA'].values) * np.pi / 180. # in radians
|
|
#detx = np.cos(rota)*x
|
|
#dety = np.sin(rota)*x
|
|
|
|
x = x.reshape((-1, 1))
|
|
model = LinearRegression()
|
|
#model = TheilSenRegressor()
|
|
results = evaluate_model(x, y, model)
|
|
a,b,err = plot_best_fit(x, y, model)
|
|
|
|
b_est = np.mean(y - a_full*x)
|
|
|
|
a_full0.append(a_full)
|
|
b_full0.append(b_full)
|
|
b_est0.append(b_est)
|
|
|
|
|
|
a0.append(a)
|
|
b0.append(b)
|
|
err0.append(err)
|
|
rev0.append(rev)
|
|
|
|
poly_x.append(rev)
|
|
poly_y.append(b_est)
|
|
|
|
|
|
crabmodel[rev]={'a':a_full, 'b':b_est, 'err':err}
|
|
if(plotme):
|
|
plot_ab(x, y, a_full, b_est, err, title="REGRESSION rev {}".format(rev))
|
|
|
|
|
|
|
|
print("ax+b: a={:.2e}, b={:.2e}, std={:.2e}\n".format(a,b,err))
|
|
ntotal=ntotal+nobs
|
|
nrev=nrev+1
|
|
|
|
print("Orbits: {}, obs: {}".format(nrev,ntotal))
|
|
|
|
npoly=4
|
|
|
|
z = np.polyfit(poly_x, poly_y, npoly)
|
|
|
|
p = np.poly1d(z)
|
|
poly_z=[]
|
|
for t in poly_x:
|
|
poly_z.append(p(t))
|
|
plt.scatter(poly_x, poly_y)
|
|
plt.plot(poly_x, poly_z, color='r')
|
|
plt.title("Crab detector count rate evolution")
|
|
plt.ylabel("Crab count rate cts/s/pix")
|
|
plt.xlabel("INTEGRAL orbit")
|
|
#plt.show()
|
|
plt.savefig(proddir+fn.replace(".fits",".sco_rate.png"))
|
|
|
|
indices = sorted(
|
|
range(len(rev0)),
|
|
key=lambda index: rev0[index]
|
|
)
|
|
|
|
coldefs = fits.ColDefs([
|
|
fits.Column(name='REV', format='J', unit='', array=[rev0[index] for index in indices]),
|
|
fits.Column(name='A', format='D', unit='', array=[a0[index] for index in indices]),
|
|
fits.Column(name='B', format='D', unit='', array=[b0[index] for index in indices]),
|
|
fits.Column(name='ERR', format='D', unit='', array=[err0[index] for index in indices]),
|
|
fits.Column(name='A_FULL', format='D', unit='', array=[a_full0[index] for index in indices]),
|
|
fits.Column(name='B_FULL', format='D', unit='', array=[b_full0[index] for index in indices]),
|
|
fits.Column(name='B_EST', format='D', unit='', array=[b_est0[index] for index in indices]),
|
|
fits.Column(name='B_POLY', format='D', unit='', array=[poly_z[index] for index in indices]),
|
|
])
|
|
|
|
fout = fn.replace(".fits",".scox1.fits")
|
|
hdu = fits.BinTableHDU.from_columns(coldefs, name='GRXE')
|
|
hdu.header['MISSION'] = ('INTEGRAL', '')
|
|
hdu.header['TELESCOP'] = ('IBIS', '')
|
|
hdu.header['INSTITUT'] = ('IKI', 'Affiliation')
|
|
hdu.header['AUTHOR'] = ('Roman Krivonos', 'Responsible person')
|
|
hdu.header['EMAIL'] = ('krivonos@cosmos.ru', 'E-mail')
|
|
#hdu.add_checksum()
|
|
print(hdu.columns)
|
|
hdu.writeto(proddir+fout, overwrite=True)
|
|
|
|
|