ridge/scripts/03_grxe_map.py
2024-12-05 17:12:01 +03:00

182 lines
4.6 KiB
Python
Executable File

#!/usr/bin/env python
__author__ = "Roman Krivonos"
__copyright__ = "Space Research Institute (IKI)"
import numpy as np
import numpy.ma as ma
import pandas as pd
from astropy.wcs import WCS
from astropy import wcs
from astropy.io import fits
from astropy.table import Table, Column
import matplotlib.pyplot as plt
import math, sys, os
import pickle
from astropy.coordinates import SkyCoord # High-level coordinates
from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames
from astropy.coordinates import Angle, Latitude, Longitude # Angles
import astropy.units as u
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import HuberRegressor
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import TheilSenRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedKFold
from astropy.stats import sigma_clip
from astropy.stats import sigma_clipped_stats
from scipy.stats import norm
from scipy.stats import describe
from scipy.stats import sem
from numpy import absolute
from numpy import arange
from ridge.utils import *
from ridge.config import *
enkey = sys.argv[1]
#key = sys.argv[2]
key="ALL"
fn='detcnts.{}.{}.resid.fits'.format(enkey,key)
print("Reading {}".format(proddir+fn))
dat = Table.read(proddir+fn)
df = dat.to_pandas()
#df = df.query('abs(LAT) < {} & abs(LON) < {}'.format(5,5))
n_bins = 80
minmax=[-300,800]
sigma=3
maxiters=10
with open(ignored_rev_file, 'rb') as fp:
ignored_rev = pickle.load(fp)
print(ignored_rev)
print("{} orbits ignored".format(len(ignored_rev)))
ign=ignored_rev.tolist()
hdulist = fits.open(modelsdir+modelrxte)
w = wcs.WCS(hdulist[0].header)
smap =hdulist[0].data
sx=int(hdulist[0].header['NAXIS1'])
sy=int(hdulist[0].header['NAXIS2'])
# fill AITOF map indexes
# -- Already done in 02_grxe_resid.py
"""
ds9x=[]
ds9y=[]
for i,row in df.iterrows():
lon=row['LON']
lat=row['LAT']
world = SkyCoord(lon,lat, frame=Galactic, unit="deg")
ra=world.fk5.ra.deg
dec=world.fk5.dec.deg
pixcrd = w.wcs_world2pix([(lon,lat)], 1)
y=int(pixcrd[0][0])
x=int(pixcrd[0][1])
ds9x.append(x)
ds9y.append(y)
#print(x,y,smap[y-1,x-1])
df['DS9Y']=ds9x
df['DS9X']=ds9y
"""
#
# initiate 2d arrays
#
mean_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sign_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sem_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
cnt_map = np.array([[0 for i in range(sx)] for j in range(sy)])
# simulations
mean_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
error_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sign_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
mean_sim={}
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
mean_sim[dkey] = []
obsid_map = {}
grxe_map = {}
grxe_err_map = {}
# redefine simfrac for low number of ScWs in pixel
simfrac=2
nsim=100
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
world = w.wcs_pix2world([(i+1,j+1)], 1)
lon = world[0][0]
lat = world[0][1]
if(np.isnan(lon) or np.isnan(lat)):
continue
ds9i=i+1
ds9j=j+1
#df0 = df.query('DS9X == {} & DS9Y == {}'.format(ds9i,ds9j))
df0 = df.query('DS9X == {} & DS9Y == {} & REV != @ign'.format(ds9i,ds9j))
if (df0.shape[0] < nscw_min):
continue
sg_mean,sg_sem,skew_val,skew_err = get_spec(df0, sigma=4, grxe_err_cut=grxe_err_cut, enkey=enkey, plotme=False, bootstrap=False, gaussfit=True)
#print('sg_sem',sg_sem)
mean_map[j][i] = sg_mean
sem_map[j][i] = sg_sem
#sign_map[j][i] = sg_mean/sg_sem
cnt_map[j][i] = df0.shape[0]
""" Filter by error map """
# Calculate the percentiles across the x and y dimension
perc = np.percentile(sem_map, sem_cut, axis=(0, 1), keepdims=False)
print("{} {}: {}% cut of SEM map: {:.2f} mCrab".format(key,enkey,sem_cut,perc))
idx=np.where(sem_map > perc)
print("index size {}".format(len(idx)))
mean_map[idx]=0.0
sem_map[idx]=0.0
cnt_map[idx]=0
sign_map[idx]=0.0
if not os.path.exists(mapsdir):
os.makedirs(mapsdir)
hdulist[0].data=mean_map
hdulist.writeto(mapsdir+fn.replace(".fits",".mean.fits"),overwrite=True)
hdulist[0].data=sem_map
hdulist.writeto(mapsdir+fn.replace(".fits",".error.fits"),overwrite=True)
hdulist[0].data=cnt_map
hdulist.writeto(mapsdir+fn.replace(".fits",".cnt.fits"),overwrite=True)
hdulist[0].data=sign_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sign.fits"),overwrite=True)