ridge/scripts/03_scox1_spec.py

126 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python
__author__ = "Roman Krivonos"
__copyright__ = "Space Research Institute (IKI)"
import numpy as np
import pandas as pd
from astropy.io import fits
from astropy.table import Table, Column
from astropy import units as u
import matplotlib.pyplot as plt
import math, sys, os
import pickle
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import HuberRegressor
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import TheilSenRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedKFold
#from statsmodels.robust.scale import huber
from astropy.stats import sigma_clip
from astropy.stats import sigma_clipped_stats
from scipy.stats import norm
from scipy.stats import describe
from scipy.stats import sem
import subprocess
from numpy import absolute
from numpy import arange
from ridge.utils import *
from ridge.config import *
inkey="ALL"
skey="SCOX1"
plotme=False
ebands0={'B01':[0.0,0.0],
'B02':[0.0,0.0],
'B03':[0.0,0.0],
'B04':[0.0,0.0],
'B05':[0.0,0.0],
'B06':[0.0,0.0],
'B07':[0.0,0.0],
'B08':[0.0,0.0],
'B09':[0.0,0.0],
'B10':[0.0,0.0],
'B11':[0.0,0.0],
'B12':[0.0,0.0],
'B13':[0.0,0.0],
'B14':[0.0,0.0],
'B15':[0.0,0.0],
'B16':[0.0,0.0],
'B17':[0.0,0.0],
'B18':[0.0,0.0],
'B19':[0.0,0.0],
'B20':[0.0,0.0],
'B21':[0.0,0.0],
}
"""
ebands0={'A01':[0.0,0.0],
'A02':[0.0,0.0],
'A03':[0.0,0.0],
}
"""
mcrab=u.def_unit('mCrab')
ctss=u.def_unit('cts/s')
u.add_enabled_units([mcrab,ctss])
if not os.path.exists(specdir):
os.makedirs(specdir)
fitsdir = "{}fits/".format(specdir)
if not os.path.exists(fitsdir):
os.makedirs(fitsdir)
for enkey in ebands0.keys():
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
dat = Table.read(proddir+fn)
df = dat.to_pandas()
#crab_sep_max=2.0
query = 'PHASE > {} & PHASE < {} & SCO_SEP < {}'.format(phmin,phmax,crab_sep_max)
df = df.query(query)
print("{}: {} N={}".format(enkey, query, df.shape[0]))
t = Table.from_pandas(df)
t.write("{}fits/SCOX1.{}.fits".format(specdir,enkey),overwrite=True)
if not (df.shape[0]>0):
print("continue")
continue
sg_mean,sg_sem,skew_val,skew_err = get_spec_src(df, sigma=3, grxe_err_cut=grxe_err_cut, enkey=enkey, plotme=True, gaussfit=True)
ebands0[enkey]=[sg_mean,sg_sem]
fspec="{}{}.spec".format(specdir,skey)
with open(fspec, 'w') as fp:
for enkey in ebands0.keys():
flux=ebands0[enkey][0]
err=ebands0[enkey][1]
print("[DATA] {}: {} {:.6f} {:.6f}".format(skey,enkey,flux,err))
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],flux,err))
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
try:
for remfile in ["cols","cols1","cols2","header",]:
os.remove(remfile)
except OSError:
pass