ridge/scripts/03_grxe_spec.py
Roman Krivonos 96c41060a6 July
2024-07-12 13:06:10 +03:00

221 lines
6.5 KiB
Python
Executable File

#!/usr/bin/env python
__author__ = "Roman Krivonos"
__copyright__ = "Space Research Institute (IKI)"
import numpy as np
import pandas as pd
from astropy.io import fits
from astropy.table import Table, Column
from astropy import units as u
import matplotlib.pyplot as plt
import math, sys, os
import pickle
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import HuberRegressor
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import TheilSenRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedKFold
#from statsmodels.robust.scale import huber
from astropy.stats import sigma_clip
from astropy.stats import sigma_clipped_stats
from scipy.stats import norm
from scipy.stats import describe
from scipy.stats import sem
import subprocess
from numpy import absolute
from numpy import arange
from ridge.utils import *
from ridge.config import *
inkey="ALL"
sigma=3
plotme=False
"""
ebands0={#'E02':[0.0,0.0],
'E03':[0.0,0.0],
'E04':[0.0,0.0],
'E05':[0.0,0.0],
'E06':[0.0,0.0],
'E07':[0.0,0.0],
'E08':[0.0,0.0],
'E09':[0.0,0.0],
'E10':[0.0,0.0],
'E11':[0.0,0.0],
'E12':[0.0,0.0],}
"""
ebands0={'B01':[0.0,0.0],
'B02':[0.0,0.0],
'B03':[0.0,0.0],
'B04':[0.0,0.0],
'B05':[0.0,0.0],
'B06':[0.0,0.0],
'B07':[0.0,0.0],
'B08':[0.0,0.0],
'B09':[0.0,0.0],
'B10':[0.0,0.0],
'B11':[0.0,0.0],
'B12':[0.0,0.0],
'B13':[0.0,0.0],
'B14':[0.0,0.0],
'B15':[0.0,0.0],
'B16':[0.0,0.0],
'B17':[0.0,0.0],
'B18':[0.0,0.0],
'B19':[0.0,0.0],
'B20':[0.0,0.0],
'B21':[0.0,0.0],
}
mcrab=u.def_unit('mCrab')
ctss=u.def_unit('cts/s')
u.add_enabled_units([mcrab,ctss])
#skey='Geminga'
if len(sys.argv) > 1:
skeys = [sys.argv[1]]
else:
skeys = list(skyreg.keys())
# don't plot, if all regions are taken
plotme=False
if not os.path.exists(specdir):
os.makedirs(specdir)
with open(proddir+'detcnts.B21.ignored_rev.resid.pkl', 'rb') as fp:
ignored_rev = pickle.load(fp)
print("{} orbits ignored".format(len(ignored_rev)))
ign=ignored_rev.tolist()
for skey in skeys:
if not skey in skyreg.keys():
print("{} not found in {}".format(skey,list(skyreg.keys())))
sys.exit()
# generate array for bootstrap
ebands_sim={}
for enkey in ebands0.keys():
ebands_sim[enkey] = []
for enkey in ebands0.keys():
#bkg_fn="detcnts.{}.BKG.resid.fits".format(enkey,inkey)
#syserr, bkg_sem = get_syserror(proddir+bkg_fn)
fn="detcnts.{}.{}.resid.fits".format(enkey,inkey)
#d1 = fits.getdata(proddir+fn)
#d2=np.array(d1)
#df=pd.DataFrame(d2.view(d2.dtype.newbyteorder()))
#df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
#with fits.open(proddir+fn) as data:
# df = pd.DataFrame(data[1].data)
dat = Table.read(proddir+fn, unit_parse_strict='silent')
df = dat.to_pandas()
#print(df.columns)
#sys.exit()
#df = df.query("REV == @ign")
query = "LON > {} & LON < {} & LAT > {} & LAT < {} & REV != @ign".format(
skyreg[skey]['lon'] - skyreg[skey]['wlon']/2,
skyreg[skey]['lon'] + skyreg[skey]['wlon']/2,
skyreg[skey]['lat'] - skyreg[skey]['wlat']/2,
skyreg[skey]['lat'] + skyreg[skey]['wlat']/2)
#sys.exit()
df = df.query(query)
print("{}, {}: {} N={}".format(skey, enkey, query, df.shape[0]))
t = Table.from_pandas(df)
t.write("{}fits/{}.{}.fits".format(specdir,skey,enkey),overwrite=True)
texp = np.array(df['TEXP'])
with open("{}fits/{}.{}.livetime".format(specdir,skey,enkey), 'w') as fp:
fp.write("{} {} ScWs: {} Texp: {:.2f} Ms\n".format(skey,enkey,df.shape[0],np.sum(texp)/1e6))
if not (df.shape[0]>0):
continue
#plt.scatter(df['LON'],df['LAT'])
#plt.show()
#print("*** {} {} Data Frame size {} ***".format(skey, enkey, df.size))
sg_mean,sg_sem = get_spec(df, sigma=2, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey, plotme=False)
ebands0[enkey]=[sg_mean,sg_sem]
nsel = int(df.shape[0]/simfrac)
for n in range(nsim):
df0=df.sample(nsel)
sg_mean,sg_sem = get_spec(df0, grxe_err_cut=grxe_err_cut, skey=skey, enkey=enkey)
ebands_sim[enkey].append(sg_mean)
#ebands_sim[enkey][1].append(sg_sem)
###
fspec="{}{}.spec".format(specdir,skey)
with open(fspec, 'w') as fp:
for enkey in ebands0.keys():
flux=ebands0[enkey][0]
err=ebands0[enkey][1]
print("[DATA] {}: {} {:.6f} {:.6f}".format(skey,enkey,flux,err))
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],flux,err))
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
###
fspec="{}{}.sim.spec".format(specdir,skey)
with open(fspec, 'w') as fp:
for enkey in ebands_sim.keys():
data=ebands_sim[enkey]
(mu, sg) = norm.fit(data)
fp.write("0 {} {:.6f} {:.6f} 0.0\n".format(bands[enkey],mu,sg))
print("[BOOT] {}: {} {:.6f} {:.6f}".format(skey,enkey,mu,sg))
if(plotme):
n, bins, patches = plt.hist(data, 60, density=True, facecolor='green', alpha=0.75)
# add a 'best fit' line
y = norm.pdf(bins, mu, sg)
l = plt.plot(bins, y, 'r--', linewidth=2)
#plot
plt.axvline(mu, color="black")
plt.axvline(ebands0[enkey][0], color="black", linestyle="dashed")
#plt.axvline(mu+sg_sem, color="black", linestyle="dashed")
#plt.axvline(mu-sg_sem, color="black", linestyle="dashed")
plt.axvline(mu+sg, color="blue", linestyle="dashed")
plt.axvline(mu-sg, color="blue", linestyle="dashed")
plt.xlabel('Flux, mCrab')
plt.ylabel('Probability')
plt.title("[BOOT] {}: {:.2f} {:.2f}".format(enkey, mu, sg))
plt.grid(True)
plt.show()
subprocess.run(["perl", "do_pha_igr_v3_mCrab.pl", fspec])
try:
for remfile in ["cols","cols1","cols2","header",]:
os.remove(remfile)
except OSError:
pass