Added Det2raw for region files, PEP8 adjustments
This commit is contained in:
parent
8db10f4bec
commit
094063d21d
@ -2,7 +2,7 @@
|
||||
import numpy as np
|
||||
import itertools
|
||||
from pandas import DataFrame, read_csv
|
||||
from astropy.table import Table
|
||||
from astropy.table import Table, unique
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy import units as u
|
||||
from multiprocessing import get_context, cpu_count
|
||||
@ -16,6 +16,7 @@ from glob import glob
|
||||
from warnings import filterwarnings
|
||||
filterwarnings('ignore')
|
||||
|
||||
|
||||
def get_link_list(folder, sort_list=True):
|
||||
links = glob(f'{folder}\\**\\*_cl.evt', recursive=True)
|
||||
if sort_list:
|
||||
@ -23,18 +24,30 @@ def get_link_list(folder, sort_list=True):
|
||||
return np.array(sorted_list)
|
||||
else:
|
||||
return np.array(links)
|
||||
|
||||
|
||||
def binary_array(num):
|
||||
variants = [[0, 1], ]*num
|
||||
out = np.zeros((2**num, num), bool)
|
||||
for idx, level in enumerate(itertools.product(*variants)):
|
||||
out[idx] = np.array(level, dtype=bool)
|
||||
return out
|
||||
|
||||
|
||||
def create_array(filename, mode='Sky'):
|
||||
temp = fits.getdata(filename, 1)
|
||||
if mode == 'Sky':
|
||||
return np.histogram2d(temp['Y'],temp['X'],1000,[[0, 1000], [0, 1000]])[0]
|
||||
return np.histogram2d(temp['Y'],
|
||||
temp['X'],
|
||||
1000,
|
||||
[[0, 1000], [0, 1000]])[0]
|
||||
if mode == 'Det':
|
||||
return np.histogram2d(temp['DET1Y'],temp['DET1X'],360,[[0, 360], [0, 360]])[0]
|
||||
return np.histogram2d(temp['DET1Y'],
|
||||
temp['DET1X'],
|
||||
360,
|
||||
[[0, 360], [0, 360]])[0]
|
||||
|
||||
|
||||
def get_wcs(file):
|
||||
header = file[1].header
|
||||
wcs = WCS({
|
||||
@ -46,6 +59,8 @@ def get_wcs(file):
|
||||
'NAXIS1': header['TLMAX38'], 'NAXIS2': header['TLMAX39']
|
||||
})
|
||||
return wcs
|
||||
|
||||
|
||||
def atrous(level=0, max_size=1001):
|
||||
base = 1/256*np.array([
|
||||
[1, 4, 6, 4, 1],
|
||||
@ -58,8 +73,11 @@ def atrous(level = 0, max_size = 1001):
|
||||
output = np.zeros((size, size))
|
||||
output[::2**level, ::2**level] = base
|
||||
if output.shape[0] > max_size:
|
||||
return output[(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1, (size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1]
|
||||
return output[(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1,
|
||||
(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1]
|
||||
return output
|
||||
|
||||
|
||||
def gauss(level=0, max_size=1000):
|
||||
size = min(5*2**(level+1)+1, max_size)
|
||||
sigma = 2**(level)
|
||||
@ -67,6 +85,8 @@ def gauss(level=0, max_size = 1000):
|
||||
x = A*np.exp((-(np.arange(size)-(size-1)//2)**2)/(2*sigma**2))
|
||||
out = np.multiply.outer(x, x)
|
||||
return out
|
||||
|
||||
|
||||
def adjecent(array):
|
||||
grid = np.array([
|
||||
[1, 1, 1],
|
||||
@ -75,23 +95,29 @@ def adjecent(array):
|
||||
])
|
||||
output = fftconvolve(array, grid, mode='same') >= 0.5
|
||||
try:
|
||||
output = np.logical_and(np.logical_and(output, np.logical_not(array)),np.logical_not(array.mask))
|
||||
output = np.logical_and(np.logical_and(output, np.logical_not(array)),
|
||||
np.logical_not(array.mask))
|
||||
except AttributeError:
|
||||
output = np.logical_and(output, np.logical_not(array))
|
||||
output = np.argwhere(output == True)
|
||||
return output[:, 0], output[:, 1]
|
||||
|
||||
|
||||
def add_borders(array, middle=True):
|
||||
mask = np.zeros(array.shape)
|
||||
datax, datay = np.any(array > 0, 0), np.any(array > 0, 1)
|
||||
# Add border masks
|
||||
x_min, y_min = np.argmax(datax), np.argmax(datay)
|
||||
x_max, y_max = len(datax) - np.argmax(datax[::-1]), len(datay) - np.argmax(datay[::-1])
|
||||
x_max = len(datax) - np.argmax(datax[::-1])
|
||||
y_max = len(datay) - np.argmax(datay[::-1])
|
||||
mask[y_min:y_max, x_min:x_max] = True
|
||||
if middle is True:
|
||||
mask[176:191, :] = False
|
||||
mask[:, 176:191] = False
|
||||
mask = np.logical_not(mask)
|
||||
return mask
|
||||
|
||||
|
||||
def fill_poisson(array, size_input=32):
|
||||
if not (isinstance(array, np.ma.MaskedArray)):
|
||||
print('No mask found')
|
||||
@ -108,6 +134,8 @@ def fill_poisson(array, size_input=32):
|
||||
mask[idx] = False
|
||||
size *= 2
|
||||
return output
|
||||
|
||||
|
||||
def mirror(array):
|
||||
size = array.shape[0]
|
||||
output = np.tile(array, (3, 3))
|
||||
@ -116,6 +144,8 @@ def mirror(array):
|
||||
output[:, 0:size] = np.fliplr(output[:, 0:size])
|
||||
output[:, 2*size:3*size] = np.fliplr(output[:, 2*size:3*size])
|
||||
return output
|
||||
|
||||
|
||||
class Observation:
|
||||
def __init__(self, file_name, E_borders=[3,20]):
|
||||
self.filename = file_name
|
||||
@ -131,10 +161,12 @@ class Observation:
|
||||
self.data = np.ma.masked_array(*self.get_data(file, E_borders))
|
||||
self.hard_mask = add_borders(self.data.data, middle=False)
|
||||
self.exposure = self.header['EXPOSURE']
|
||||
|
||||
def get_coeff(self):
|
||||
coeff = np.array([0.977, 0.861, 1.163, 1.05]) if self.det == 'A' else np.array([1.004, 0.997, 1.025, 0.979])
|
||||
resized_coeff = (coeff).reshape(2, 2).repeat(180, 0).repeat(180, 1)
|
||||
return resized_coeff
|
||||
|
||||
def get_data(self, file, E_borders=[3, 20]):
|
||||
PI_min, PI_max = (np.array(E_borders)-1.6)/0.04
|
||||
data = file[1].data.copy()
|
||||
@ -148,6 +180,7 @@ class Observation:
|
||||
mask = np.logical_or(mask, add_borders(output))
|
||||
mask = np.logical_or(mask, self.get_bad_pix(file))
|
||||
return output, mask
|
||||
|
||||
def get_bad_pix(self, file):
|
||||
output = np.zeros((360, 360))
|
||||
kernel = np.ones((5, 5))
|
||||
@ -162,10 +195,13 @@ class Observation:
|
||||
output += np.histogram2d(temp['REF_DET1Y'], temp['REF_DET1X'], 360, [[0, 360],[0, 360]])[0]
|
||||
output = convolve2d(output, kernel, mode='same') > 0
|
||||
return output
|
||||
|
||||
def wavdecomp(self, mode='gauss', thresh=False, occ_coeff=False):
|
||||
# THRESHOLD
|
||||
if type(thresh) is int: thresh_max, thresh_add = thresh, thresh/2
|
||||
elif type(thresh) is tuple: thresh_max, thresh_add = thresh
|
||||
if type(thresh) is int:
|
||||
thresh_max, thresh_add = thresh, thresh/2
|
||||
elif type(thresh) is tuple:
|
||||
thresh_max, thresh_add = thresh
|
||||
# INIT NEEDED VARIABLES
|
||||
wavelet = globals()[mode]
|
||||
max_level = 8
|
||||
@ -173,7 +209,8 @@ class Observation:
|
||||
size = self.data.shape[0]
|
||||
# PREPARE ORIGINAL DATA FOR ANALYSIS: FILL THE HOLES + MIRROR + DETECTOR CORRECTION
|
||||
data = fill_poisson(self.data)
|
||||
if occ_coeff: data = data*self.get_coeff()
|
||||
if occ_coeff:
|
||||
data = data*self.get_coeff()
|
||||
data = mirror(data)
|
||||
data_bkg = data.copy()
|
||||
# ITERATIVELY CONDUCT WAVLET DECOMPOSITION
|
||||
@ -185,29 +222,55 @@ class Observation:
|
||||
sig = ((wavelet(i)**2).sum())**0.5
|
||||
bkg = fftconvolve(data_bkg, wavelet(i), mode='same')
|
||||
bkg[bkg < 0] = 0
|
||||
# err = (1+np.sqrt(bkg/sig**2 + 0.75))*sig**3
|
||||
err = (1+np.sqrt(bkg+0.75))*sig
|
||||
# significant = (np.abs(temp_out)> thresh_max*err)[size:2*size,size:2*size]
|
||||
significant = (temp_out > thresh_max*err)[size:2*size, size:2*size]
|
||||
if thresh_add != 0:
|
||||
# add_significant = (np.abs(temp_out)> thresh_add*err)[size:2*size,size:2*size]
|
||||
add_significant = (temp_out > thresh_add*err)[size:2*size, size:2*size]
|
||||
adj = adjecent(significant)
|
||||
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
||||
add_condition = np.logical_and(add_significant[adj[0], adj[1]],
|
||||
np.logical_not(significant[adj[0], adj[1]]))
|
||||
while (add_condition).any():
|
||||
to_add = adj[0][add_condition], adj[1][add_condition]
|
||||
significant[to_add[0], to_add[1]] = True
|
||||
adj = adjecent(significant)
|
||||
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
||||
# add_condition = np.logical_and(np.abs(temp_out)[adj[0],adj[1]] >= thresh_add*err[adj[0],adj[1]], np.logical_not(significant)[adj[0],adj[1]])
|
||||
add_condition = np.logical_and(add_significant[adj[0], adj[1]],
|
||||
np.logical_not(significant[adj[0],adj[1]]))
|
||||
temp_out[size:2*size, size:2*size][np.logical_not(significant)] = 0
|
||||
# WRITING THE WAVELET DECOMP LAYER
|
||||
conv_out[i] = +temp_out[size:2*size, size:2*size]
|
||||
conv_out[i][conv_out[i]<0]=0 #leave only positive data to prevent problems while summing layers
|
||||
# DISCARDING NEGATIVE COMPONENTS OF WAVELETS TO MAKE MASK BY SUMMING WAVELET LAYERS
|
||||
conv_out[i][conv_out[i] < 0] = 0
|
||||
data = conv
|
||||
conv_out[max_level] = conv[size:2*size, size:2*size]
|
||||
return conv_out
|
||||
def process(obs_path):
|
||||
|
||||
def region_to_raw(self, region):
|
||||
x_region, y_region = np.where(region)
|
||||
tables = []
|
||||
for i in range(4):
|
||||
current_dir = dirname(__file__)
|
||||
pixpos = Table(fits.getdata(f'{current_dir}\\pixpos\\nu{self.det}pixpos20100101v007.fits', i+1))
|
||||
pixpos = pixpos[pixpos['REF_DET1X'] != -1]
|
||||
test = np.zeros(len(pixpos['REF_DET1X']), dtype=bool)
|
||||
for idx, (x, y) in enumerate(zip(pixpos['REF_DET1X'], pixpos['REF_DET1Y'])):
|
||||
test[idx] = np.logical_and(np.equal(x, x_region), np.equal(y, y_region)).any()
|
||||
tables.append(unique(Table({'RAWX': pixpos['RAWX'][test], 'RAWY': pixpos['RAWY'][test]})))
|
||||
hdu_list = fits.HDUList([
|
||||
fits.PrimaryHDU(),
|
||||
fits.table_to_hdu(tables[0]),
|
||||
fits.table_to_hdu(tables[1]),
|
||||
fits.table_to_hdu(tables[2]),
|
||||
fits.table_to_hdu(tables[3]),
|
||||
])
|
||||
return hdu_list
|
||||
|
||||
|
||||
def process(args):
|
||||
"""
|
||||
Creates a mask using wavelet decomposition and produces some statistical and metadata about the passed observation.
|
||||
args must contain two arguments: path to the file of interest and threshold, e.g. ('D:\Data\obs_cl.evt',(5,2))
|
||||
"""
|
||||
obs_path, thresh = args
|
||||
bin_num = 6
|
||||
try:
|
||||
obs = Observation(obs_path)
|
||||
@ -220,7 +283,7 @@ def process(obs_path):
|
||||
good_lvl = np.zeros(bin_num, dtype=bool)
|
||||
good_idx = 0
|
||||
if obs.exposure > 1000:
|
||||
wav_obs = obs.wavdecomp('gauss',(5,3),occ_coeff=True)
|
||||
wav_obs = obs.wavdecomp('gauss', thresh, occ_coeff=True)
|
||||
occ_coeff = obs.get_coeff()
|
||||
for idx, lvl in enumerate(binary_array(bin_num)):
|
||||
try:
|
||||
@ -241,6 +304,7 @@ def process(obs_path):
|
||||
region = wav_obs[2:-1][good_lvl].sum(0) > 0
|
||||
except ValueError:
|
||||
region = np.zeros(obs.data.shape, dtype=bool)
|
||||
region_raw = obs.region_to_raw(region.astype(int))
|
||||
masked_obs = np.ma.masked_array(obs.data, mask=region)
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
to_table = [obs.obs_id,
|
||||
@ -273,20 +337,22 @@ def process(obs_path):
|
||||
-1,
|
||||
-1
|
||||
]
|
||||
return to_table, region.astype(int)
|
||||
return to_table, region.astype(int), region_raw
|
||||
except TypeError:
|
||||
return obs_path, np.zeros((360,360))
|
||||
def process_folder(input_folder = None, continue_old = None, fits_folder = None):
|
||||
return obs_path, -1, -1
|
||||
|
||||
|
||||
def process_folder(input_folder=None, start_new_file=None, fits_folder=None, thresh=None):
|
||||
# DIALOGUE
|
||||
if not (input_folder):
|
||||
print('Enter path to the input folder')
|
||||
input_folder = input()
|
||||
if not(continue_old):
|
||||
if not (start_new_file):
|
||||
print('Create new file for this processing? y/n')
|
||||
continue_old = input()
|
||||
if continue_old == 'y':
|
||||
start_new_file = input()
|
||||
if start_new_file == 'y':
|
||||
start_new = True
|
||||
elif continue_old == 'n':
|
||||
elif start_new_file == 'n':
|
||||
start_new = False
|
||||
else:
|
||||
print('Cannot interprete input, closing script')
|
||||
@ -295,16 +361,27 @@ def process_folder(input_folder = None, continue_old = None, fits_folder = None)
|
||||
print(f'Enter path to the output folder')
|
||||
fits_folder = input()
|
||||
region_folder = f'{fits_folder}\\Region'
|
||||
region_raw_folder = f'{fits_folder}\\Region_raw'
|
||||
if not thresh:
|
||||
print('Enter threshold values for wavelet decomposition:')
|
||||
print('General threshold:')
|
||||
_thresh_max = float(input())
|
||||
print('Additional threshold:')
|
||||
_thresh_add = float(input())
|
||||
thresh = (_thresh_max, _thresh_add)
|
||||
# CREATE ALL NECESSARY FILES AND VARIBALES
|
||||
obs_list = get_link_list(input_folder, sort_list=True)
|
||||
start = perf_counter()
|
||||
group_size = 50
|
||||
makedirs(region_folder, exist_ok=True)
|
||||
makedirs(region_raw_folder, exist_ok=True)
|
||||
# FILTERING BY THE FILE SIZE
|
||||
print(f'Finished scanning folders. Found {len(obs_list)} observations.')
|
||||
table = {
|
||||
'obs_id':[], 'detector':[], 'ra':[], 'dec':[], 'lon':[], 'lat':[], 't_start':[], 'exposure':[],
|
||||
'count_rate':[], 'remaining_area':[], 'poisson_chi2':[], 'poisson_chi2_full':[], 'rms':[]
|
||||
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
|
||||
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
|
||||
'count_rate': [], 'remaining_area': [], 'poisson_chi2': [],
|
||||
'poisson_chi2_full': [], 'rms': []
|
||||
}
|
||||
if start_new:
|
||||
out_table = DataFrame(table)
|
||||
@ -330,7 +407,8 @@ def process_folder(input_folder = None, continue_old = None, fits_folder = None)
|
||||
process_num = cpu_count() if max_size < 50 else (cpu_count()//2 if max_size < 200 else (cpu_count()//4 if max_size < 1000 else 1))
|
||||
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
|
||||
with get_context('spawn').Pool(processes=process_num) as pool:
|
||||
for result,region in pool.imap(process,group_list):
|
||||
packed_args = map(lambda _: (_, thresh), group_list)
|
||||
for result, region, region_raw in pool.imap(process, packed_args):
|
||||
if type(result) is np.str_:
|
||||
obs_id = result[result.index('nu'):result.index('_cl.evt')]
|
||||
print(f'{num:>3} is skipped. File {obs_id}')
|
||||
@ -345,6 +423,7 @@ def process_folder(input_folder = None, continue_old = None, fits_folder = None)
|
||||
continue
|
||||
DataFrame(table).to_csv(f'{fits_folder}\\test.csv', mode='a', header=False)
|
||||
fits.writeto(f'{region_folder}\\{str(result[0])+result[1]}_region.fits', region, overwrite=True)
|
||||
fits.writeto(f'{region_raw_folder}\\{str(result[0])+result[1]}_reg_raw.fits', region_raw, overwrite=True)
|
||||
print(f'{num:>3} {str(result[0])+result[1]} is written.')
|
||||
num +=1
|
||||
print('Converting generated csv to fits file...')
|
||||
|
Loading…
x
Reference in New Issue
Block a user