commit
This commit is contained in:
commit
2a759d92ef
176
get_region_archive_table.py
Normal file
176
get_region_archive_table.py
Normal file
@ -0,0 +1,176 @@
|
||||
# %%
|
||||
from get_region_pack import *
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from astropy.table import Table
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy import units as u
|
||||
import multiprocessing
|
||||
from multiprocessing import get_context
|
||||
import warnings
|
||||
import time
|
||||
import os
|
||||
warnings.filterwarnings('ignore')
|
||||
# %%
|
||||
def ellipse(array):
|
||||
grid = np.indices(array.shape)[::-1]
|
||||
center = [((curr_axis*array).sum()/array.sum()) for curr_axis in grid]
|
||||
y,x = np.where(array)
|
||||
return center, np.abs(x-center[0]).max()*2, np.abs(y-center[1]).max()*2
|
||||
def mask_ellipse(array):
|
||||
(center_x, center_y), len_x, len_y = ellipse(array)
|
||||
x,y = np.indices(array.shape)[::-1]
|
||||
radius = ((x-center_x)/(0.5*len_x))**2+((y-center_y)/(0.5*len_y))**2
|
||||
return radius <= 1
|
||||
def poisson_divider(array):
|
||||
sub_arrays = np.zeros((4,180,180))
|
||||
for i in range(2):
|
||||
for j in range(2):
|
||||
sub_arrays[i+2*j] = array[180*i:180*(i+1),180*j:180*(j+1)].filled(-1000)
|
||||
pix_sum = 0
|
||||
for layer in sub_arrays:
|
||||
_masked_array = np.ma.masked_less(layer,0)
|
||||
pix_sum += ((_masked_array-_masked_array.mean())**2/_masked_array.mean()).sum()
|
||||
pix_sum /= np.logical_not(array.mask).sum()
|
||||
return pix_sum
|
||||
def process(argument):
|
||||
idx, obs_name = argument
|
||||
bin_num = 6
|
||||
try:
|
||||
obs = Observation(obs_name)
|
||||
sky_coord = SkyCoord(ra=obs.ra*u.deg,dec=obs.dec*u.deg,frame='fk5').transform_to('galactic')
|
||||
lon, lat = sky_coord.l.value, sky_coord.b.value
|
||||
rem_signal, rem_area, poiss_comp, rms = np.zeros((4,2**bin_num))
|
||||
region = np.zeros(obs.data.shape, dtype=bool)
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
masked_obs = np.ma.masked_array(obs.data, mask = region)
|
||||
good_lvl = np.zeros(bin_num,dtype=bool)
|
||||
good_idx = 0
|
||||
if obs.exposure > 1000:
|
||||
wav_obs = obs.wavdecomp('gauss',(5,3),occ_coeff=True)
|
||||
occ_coeff = obs.get_coeff()
|
||||
for idx, lvl in enumerate(binary_array(bin_num)):
|
||||
try:
|
||||
# region = np.array([layer>0 for layer in wav_obs[2:-1][lvl]]).sum(0).astype(bool)
|
||||
region = wav_obs[2:-1][lvl].sum(0)>0
|
||||
except ValueError:
|
||||
region = np.zeros(obs.data.shape,dtype=bool)
|
||||
masked_obs = np.ma.masked_array(obs.data, mask = region)*occ_coeff
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
rem_signal[idx] = 1-obs.data[region].sum()/obs.data.sum()
|
||||
rem_area[idx] = 1 - rem_region.sum()/np.logical_not(obs.data.mask).sum()
|
||||
# poiss_comp[idx] = poisson_divider(masked_obs)
|
||||
poiss_comp[idx] = np.mean((masked_obs-masked_obs.mean())**2/masked_obs.mean())
|
||||
rms[idx] = np.sqrt(((masked_obs-masked_obs.mean())**2).mean())
|
||||
parameter = lambda idx: ((poiss_comp[idx])**2+((1-rem_area[idx])*0.5)**2)
|
||||
if (parameter(idx)<parameter(good_idx)):
|
||||
good_idx = idx
|
||||
good_lvl = lvl
|
||||
try:
|
||||
# region = np.array([layer>0 for layer in wav_obs[2:-1][lvl]]).sum(0).astype(bool)
|
||||
region = wav_obs[2:-1][good_lvl].sum(0)>0
|
||||
except ValueError:
|
||||
region = np.zeros(obs.data.shape,dtype=bool)
|
||||
masked_obs = np.ma.masked_array(obs.data, mask = region)
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
to_table = [obs.obs_id,
|
||||
obs.det,
|
||||
obs.ra,
|
||||
obs.dec,
|
||||
lon,
|
||||
lat,
|
||||
obs.time_start,
|
||||
obs.exposure,
|
||||
masked_obs.mean()/obs.exposure, #count rate
|
||||
1 - rem_region.sum()/np.logical_not(obs.data.mask).sum(), #rem_area
|
||||
poiss_comp[good_idx],
|
||||
poiss_comp[0],
|
||||
rms[good_idx]
|
||||
]
|
||||
else:
|
||||
to_table = [obs.obs_id,
|
||||
obs.det,
|
||||
obs.ra,
|
||||
obs.dec,
|
||||
lon,
|
||||
lat,
|
||||
obs.time_start,
|
||||
obs.exposure,
|
||||
-1,
|
||||
-1, #rem_signal
|
||||
-1, #rem_area
|
||||
-1,
|
||||
-1,
|
||||
-1
|
||||
]
|
||||
return to_table, region.astype(int)
|
||||
except TypeError:
|
||||
return obs_name, np.zeros((360,360))
|
||||
#%%
|
||||
if __name__ == '__main__':
|
||||
start = time.perf_counter()
|
||||
processing = True
|
||||
start_new = True
|
||||
group_size = 50
|
||||
fits_folder = 'D:\Programms\Jupyter\Science\Source_mask\\\Archive\Processing_v8'
|
||||
region_folder = f'{fits_folder}\\Region'
|
||||
if not os.path.exists(fits_folder):
|
||||
os.makedirs(fits_folder)
|
||||
os.makedirs(region_folder)
|
||||
obs_list = get_link_list('E:\\Archive\\0[0-9]\\[0-9]',sort_list = True)[:]
|
||||
#FILTERING BY THE FILE SIZE
|
||||
print(f'Finished scanning folders. Found {len(obs_list)} observations.')
|
||||
table = {
|
||||
'obs_id':[], 'detector':[], 'ra':[], 'dec':[], 'lon':[], 'lat':[], 't_start':[], 'exposure':[],
|
||||
'count_rate':[], 'remaining_area':[], 'poisson_chi2':[], 'poisson_chi2_full':[], 'rms':[]
|
||||
}
|
||||
if start_new:
|
||||
out_table = pd.DataFrame(table)
|
||||
out_table.to_csv(f'{fits_folder}\\test.csv')
|
||||
# out_table.to_csv(f'{fits_folder}\\test_skipped.csv')
|
||||
os.system(f'copy D:\Programms\Jupyter\Science\Source_mask\Archive\Processing_v3\\test_skipped.csv {fits_folder}')
|
||||
#REMOVING PROCESSED OBSERVATIONS
|
||||
# already_processed = fits.getdata(f'{fits_folder}\\test.fits')['obs_name']
|
||||
already_processed_list = pd.read_csv(f'{fits_folder}\\test.csv',index_col=0,dtype={'obs_id':str})
|
||||
already_skipped_list = pd.read_csv(f'{fits_folder}\\test_skipped.csv',index_col=0,dtype={'obs_id':str})
|
||||
already_processed = (already_processed_list['obs_id'].astype(str)+already_processed_list['detector']).values
|
||||
already_skipped = (already_skipped_list['obs_id'].astype(str)+already_skipped_list['detector']).values
|
||||
obs_list_names = [curr[curr.index('nu')+2:curr.index('_cl.evt')-2] for curr in obs_list]
|
||||
not_processed = np.array([(curr not in already_processed) for curr in obs_list_names])
|
||||
not_skipped = np.array([(curr not in already_skipped) for curr in obs_list_names])
|
||||
obs_list = obs_list[np.logical_and(not_processed,not_skipped)]
|
||||
print(f'Removed already processed observations. {len(obs_list)} observations remain.')
|
||||
if processing:
|
||||
print('Started processing...')
|
||||
num = 0
|
||||
for group_idx in range(len(obs_list)//group_size+1):
|
||||
print(f'Started group {group_idx}')
|
||||
group_list = obs_list[group_size*group_idx:min(group_size*(group_idx+1),len(obs_list))]
|
||||
max_size = np.array([stat(file).st_size/2**20 for file in group_list]).max()
|
||||
process_num = 10 if max_size<50 else (5 if max_size<200 else (2 if max_size<1000 else 1))
|
||||
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
|
||||
with get_context('spawn').Pool(processes=process_num) as pool:
|
||||
for result,region in pool.imap(process,enumerate(group_list)):
|
||||
if type(result) is np.str_:
|
||||
obs_id = result[result.index('nu'):result.index('_cl.evt')]
|
||||
print(f'{num:>3} is skipped. File {obs_id}')
|
||||
num +=1
|
||||
continue
|
||||
for key,value in zip(table.keys(),result):
|
||||
table[key] = [value]
|
||||
if table['exposure'][0] < 1000:
|
||||
print(f'{num:>3} {str(result[0])+result[1]} is skipped. Exposure < 1000')
|
||||
pd.DataFrame(table).to_csv(f'{fits_folder}\\test_skipped.csv',mode='a',header=False)
|
||||
num +=1
|
||||
continue
|
||||
pd.DataFrame(table).to_csv(f'{fits_folder}\\test.csv',mode='a',header=False)
|
||||
fits.writeto(f'{region_folder}\\{str(result[0])+result[1]}_region.fits', region, overwrite= True)
|
||||
print(f'{num:>3} {str(result[0])+result[1]} is written.')
|
||||
num +=1
|
||||
print('Converting generated csv to fits file...')
|
||||
print(f'Current time in: {time.perf_counter()-start}')
|
||||
print(f'Processed {num/len(obs_list)*100:.2f} percent')
|
||||
csv_file = pd.read_csv(f'{fits_folder}\\test.csv',index_col=0,dtype={'obs_id':str})
|
||||
Table.from_pandas(csv_file).write(f'{fits_folder}\\test.fits',overwrite=True)
|
||||
print(f'Finished writing: {time.perf_counter()-start}')
|
||||
# %%
|
269
get_region_pack.py
Normal file
269
get_region_pack.py
Normal file
@ -0,0 +1,269 @@
|
||||
# %%
|
||||
import import_ipynb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import itertools
|
||||
|
||||
from os import listdir, mkdir, stat
|
||||
|
||||
from scipy.signal import fftconvolve, convolve2d
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import SymLogNorm as lognorm
|
||||
|
||||
from astropy.io import fits
|
||||
from astropy.wcs import WCS
|
||||
|
||||
from glob import glob
|
||||
# %%
|
||||
def binary_array(num):
|
||||
variants = [[0,1],]*num
|
||||
out = np.zeros((2**num,num),bool)
|
||||
for idx, level in enumerate(itertools.product(*variants)):
|
||||
out[idx] = np.array(level,dtype=bool)
|
||||
return out
|
||||
def create_array(filename,mode='Sky'):
|
||||
temp = fits.getdata(filename,1)
|
||||
if mode == 'Sky':
|
||||
return np.histogram2d(temp['Y'],temp['X'],1000,[[0, 1000], [0, 1000]])[0]
|
||||
if mode == 'Det':
|
||||
return np.histogram2d(temp['DET1Y'],temp['DET1X'],360,[[0, 360], [0, 360]])[0]
|
||||
def get_wcs(file):
|
||||
header = file[1].header
|
||||
wcs = WCS({
|
||||
'CTYPE1': header['TCTYP38'], 'CTYPE2': header['TCTYP39'],
|
||||
'CUNIT1': header['TCUNI38'], 'CUNIT2': header['TCUNI39'],
|
||||
'CDELT1': header['TCDLT38'], 'CDELT2': header['TCDLT39'],
|
||||
'CRPIX1': header['TCRPX38'], 'CRPIX2': header['TCRPX39'],
|
||||
'CRVAL1': header['TCRVL38'], 'CRVAL2': header['TCRVL39'],
|
||||
'NAXIS1': header['TLMAX38'], 'NAXIS2': header['TLMAX39']
|
||||
})
|
||||
return wcs
|
||||
def get_link_list(folder, sort_list=False):
|
||||
links = glob(f'{folder}\\**\\*_cl.evt',recursive=True)
|
||||
sorted_list = sorted(links, key=lambda x: stat(x).st_size)
|
||||
return np.array(sorted_list)
|
||||
def atrous(level = 0, resize = False, max_size = 1001):
|
||||
base = 1/256*np.array([
|
||||
[1, 4, 6, 4, 1],
|
||||
[4, 16, 24, 16, 4],
|
||||
[6, 24, 36, 24, 6],
|
||||
[4, 16, 24, 16, 4],
|
||||
[1, 4, 6, 4, 1],
|
||||
])
|
||||
size = 2**level * (base.shape[0]-1)+1
|
||||
output = np.zeros((size,size))
|
||||
output[::2**level, ::2**level] = base
|
||||
if resize:
|
||||
output = np.pad(output, pad_width=2**(level+1))
|
||||
if output.shape[0]>max_size:
|
||||
return output[(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1, (size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1]
|
||||
return output
|
||||
def gauss(level=0, resize=False, max_size = 1000):
|
||||
size = min(5*2**level+1 if not resize else 5*2**(level+1)+1, max_size)
|
||||
sigma = 2**(level)
|
||||
if sigma < 1:
|
||||
out = np.zeros((size+1,size+1))
|
||||
out[int((size-1)/2)+1][int((size-1)/2)+1] = 1
|
||||
return out
|
||||
A = 1/(2*np.pi*sigma**2)**0.5
|
||||
x = A*np.exp( (-(np.arange(size)-(size-1)//2)**2)/(2*sigma**2))
|
||||
out = np.multiply.outer(x,x)
|
||||
return out
|
||||
def sigma(mode='atrous',level=0):
|
||||
if mode=='atrous':
|
||||
sigma = [0.8908, 0.20066, 0.08551, 0.04122, 0.02042, 0.0114]
|
||||
elif mode=='gauss':
|
||||
sigma = [0.912579, 0.125101, 0.104892, 4.97810e-02, 2.46556e-02, 1.14364e-02]
|
||||
if level < 6:
|
||||
return sigma[level]
|
||||
else:
|
||||
return sigma[5]/2**(level-5)
|
||||
def adjecent(array):
|
||||
grid = np.array([
|
||||
[1,1,1],
|
||||
[1,0,1],
|
||||
[1,1,1]
|
||||
])
|
||||
output = fftconvolve(array,grid,mode='same') >= 0.5
|
||||
try:
|
||||
output = np.logical_and(np.logical_and(output, np.logical_not(array)),np.logical_not(array.mask))
|
||||
except AttributeError:
|
||||
output = np.logical_and(output, np.logical_not(array))
|
||||
output = np.argwhere(output == True)
|
||||
return output[:,0], output[:,1]
|
||||
def add_borders(array,middle=True):
|
||||
# array_blurred = convolve2d(array,np.ones((5,5)),mode='same')
|
||||
mask = np.zeros(array.shape)
|
||||
datax, datay = np.any(array>0,0), np.any(array>0,1)
|
||||
# datax, datay = np.any(array_blurred>0,0), np.any(array_blurred>0,1)
|
||||
#Add border masks
|
||||
x_min, y_min = np.argmax(datax), np.argmax(datay)
|
||||
x_max, y_max = len(datax) - np.argmax(datax[::-1]), len(datay) - np.argmax(datay[::-1])
|
||||
# x_mid_min, y_mid_min = x_min+10+np.argmin(datax[x_min+10:]), y_min+10+np.argmin(datay[y_min+10:])
|
||||
# x_mid_max, y_mid_max = x_max-10-np.argmin(datax[x_max-11::-1]), y_max-10-np.argmin(datay[y_max-11::-1])
|
||||
mask[y_min:y_max,x_min:x_max] = True
|
||||
if middle is True:
|
||||
mask[176:191,:] = False
|
||||
mask[:,176:191] = False
|
||||
# mask[y_mid_min:y_mid_max,:] = False
|
||||
# mask[:,x_mid_min:x_mid_max] = False
|
||||
mask = np.logical_not(mask)
|
||||
return mask
|
||||
def fill_poisson(array, size_input=32):
|
||||
if not(isinstance(array,np.ma.MaskedArray)):
|
||||
print('No mask found')
|
||||
return array
|
||||
size = size_input
|
||||
output = array.data.copy()
|
||||
mask = array.mask.copy()
|
||||
while mask.sum()>1:
|
||||
kernel = np.ones((size,size))/size**2
|
||||
# coeff = fftconvolve(np.logical_not(mask), kernel, mode='same')
|
||||
coeff = fftconvolve(np.logical_not(mask),kernel,mode='same')
|
||||
mean = fftconvolve(output,kernel,mode='same')
|
||||
idx = np.where(np.logical_and(mask,coeff>0.1))
|
||||
output[idx] = np.random.poisson(np.abs(mean[idx]/coeff[idx]))
|
||||
mask[idx] = False
|
||||
size *= 2
|
||||
return output
|
||||
def fill_mean(array,size_input=3):
|
||||
size = size_input
|
||||
if not(isinstance(array,np.ma.MaskedArray)):
|
||||
print('No mask found')
|
||||
return array
|
||||
output = array.filled(0)
|
||||
for i,j in zip(*np.where(array.mask)):
|
||||
output[i,j] = array[max(0,i-size):min(array.shape[0]-1,i+size+1),max(0,j-size):min(array.shape[1]-1,j+size+1)].mean()
|
||||
while np.isnan(output).any():
|
||||
size += 5
|
||||
for i,j in zip(*np.where(np.isnan(output))):
|
||||
output[i,j] = array[max(0,i-size):min(array.shape[0]-1,i+size+1),max(0,j-size):min(array.shape[1]-1,j+size+1)].mean()
|
||||
return output
|
||||
def mirror(array):
|
||||
size = array.shape[0]
|
||||
output = np.tile(array,(3,3))
|
||||
output[0:size] = np.flipud(output[0:size])
|
||||
output[2*size:3*size] = np.flipud(output[2*size:3*size])
|
||||
output[:,0:size] = np.fliplr(output[:,0:size])
|
||||
output[:,2*size:3*size] = np.fliplr(output[:,2*size:3*size])
|
||||
return output
|
||||
class Observation:
|
||||
def __init__(self, file_name, E_borders=[3,20]):
|
||||
self.filename = file_name
|
||||
self.name = file_name[file_name.find('nu'):].replace('_cl.evt','')
|
||||
with fits.open(file_name) as file:
|
||||
self.obs_id = file[0].header['OBS_ID']
|
||||
self.ra = file[0].header['RA_NOM']
|
||||
self.dec = file[0].header['DEC_NOM']
|
||||
self.time_start = file[0].header['TSTART']
|
||||
self.header = file[0].header
|
||||
self.det = self.header['INSTRUME'][-1]
|
||||
self.wcs = get_wcs(file)
|
||||
self.data = np.ma.masked_array(*self.get_data(file,E_borders))
|
||||
self.hard_mask = add_borders(self.data.data,middle=False)
|
||||
shift = shift = int((360-64)/2)
|
||||
self.model = (fits.getdata(f'D:\Programms\Jupyter\Science\Source_mask\Model/det1_fpm{self.det}.cxb.fits',0)
|
||||
*(180/np.pi/10150)**2)[shift:360+shift,shift:360+shift]
|
||||
self.exposure = self.header['EXPOSURE']
|
||||
# def get_coeff(self,folder='D:\\Programms\\Jupyter\\Science\\Source_mask\\Archive\\OCC_observations'):
|
||||
# try:
|
||||
# # _occ_list = get_link_list('D:\\Programms\\Jupyter\\Science\\Source_mask\\Archive\\OCC_observations')
|
||||
# _occ_list = get_link_list(folder)
|
||||
# occ_list = dict()
|
||||
# for name in _occ_list:
|
||||
# occ_list[name[name.index('nu'):name.index('02_cl.evt')]] = name
|
||||
# occ = Observation(occ_list[self.name[:-2]],E_borders=[10,20])
|
||||
# output = np.zeros((360,360))
|
||||
# for i in range(2):
|
||||
# for j in range(2):
|
||||
# _temp = occ.data[180*i:180*(i+1),180*j:180*(j+1)].mean()
|
||||
# output[180*i:180*(i+1),180*j:180*(j+1)] = _temp if _temp != 0 else 1
|
||||
# except KeyError:
|
||||
# output = np.ones((360,360))
|
||||
# out = output.min()/output
|
||||
# if np.any(out<0.8):
|
||||
# return np.ones((360,360))
|
||||
# else:
|
||||
# return out
|
||||
def get_coeff(self):
|
||||
# coeff = np.array([0.972,0.895,1.16,1.02]) if self.det=='A' else np.array([0.991,1.047,1.012,0.956])
|
||||
coeff = np.array([0.977,0.861,1.163,1.05]) if self.det=='A' else np.array([1.004,0.997,1.025,0.979])
|
||||
test = (coeff).reshape(2,2).repeat(180,0).repeat(180,1)
|
||||
return test
|
||||
def get_data(self, file, E_borders=[3,20]):
|
||||
PI_min, PI_max = (np.array(E_borders)-1.6)/0.04
|
||||
data = file[1].data.copy()
|
||||
idx_mask = (data['STATUS'].sum(1) == 0)
|
||||
idx_output = np.logical_and(idx_mask,np.logical_and((data['PI']>PI_min),(data['PI']<PI_max)))
|
||||
data_output = data[idx_output]
|
||||
data_mask = data[np.logical_not(idx_mask)]
|
||||
build_hist = lambda array: np.histogram2d(array['DET1Y'],array['DET1X'],360,[[0,360],[0,360]])[0]
|
||||
output = build_hist(data_output)
|
||||
mask = build_hist(data_mask)
|
||||
mask = np.logical_or(mask,add_borders(output))
|
||||
mask = np.logical_or(mask, self.get_bad_pix(file))
|
||||
return output, mask
|
||||
def get_bad_pix(self, file):
|
||||
output = np.zeros((360,360))
|
||||
kernel = np.ones((5,5))
|
||||
for i in range(4):
|
||||
pixpos_file = fits.getdata(f'D:\\Programms\\Jupyter\\Science\\Source_mask\\Pixpos\\nu{self.det}pixpos20100101v007.fits',i+1)
|
||||
bad_pix_file = file[3+i].data.copy()
|
||||
temp = np.zeros(len(pixpos_file),dtype=bool)
|
||||
for x,y in zip(bad_pix_file['rawx'],bad_pix_file['rawy']):
|
||||
temp = np.logical_or(temp, np.equal(pixpos_file['rawx'],x)*np.equal(pixpos_file['rawy'],y))
|
||||
temp = pixpos_file[temp]
|
||||
output += np.histogram2d(temp['REF_DET1Y'],temp['REF_DET1X'], 360, [[0,360],[0,360]])[0]
|
||||
output = convolve2d(output, kernel, mode='same') >0
|
||||
return output
|
||||
def wavdecomp(self, mode = 'atrous', thresh=False, iteration = 1,occ_coeff = False):
|
||||
#THRESHOLD
|
||||
if type(thresh) is int: thresh_max, thresh_add = thresh, thresh/2
|
||||
elif type(thresh) is tuple: thresh_max, thresh_add = thresh
|
||||
#INIT BASIC VARIABLES
|
||||
wavelet = globals()[mode]
|
||||
# max_level = int(np.ceil(np.log2(self.data.shape[0])))+1
|
||||
max_level = 8
|
||||
conv_out = np.zeros((max_level+1,self.data.shape[0],self.data.shape[1]))
|
||||
size = self.data.shape[0]
|
||||
#PREPARE ORIGINAL DATA FOR ANALYSIS: FILL THE HOLES + MIRROR + DETECTOR CORRECTION
|
||||
data = fill_poisson(self.data)
|
||||
if occ_coeff: data = data*self.get_coeff()
|
||||
data = mirror(data)
|
||||
data_bkg = data.copy()
|
||||
#ITERATIVELY CONDUCT WAVLET DECOMPOSITION
|
||||
for i in range(max_level):
|
||||
for num_iter in range(iteration):
|
||||
conv = fftconvolve(data,wavelet(i),mode='same')
|
||||
temp_out = data-conv
|
||||
#ERRORMAP CALCULATION
|
||||
if thresh_max != 0:
|
||||
sig = sigma(mode, i)
|
||||
bkg = fftconvolve(data_bkg, wavelet(i),mode='same')
|
||||
bkg[bkg<0] = 0
|
||||
# err = (1+np.sqrt(bkg/sig**2 + 0.75))*sig**3
|
||||
err = (1+np.sqrt(bkg+0.75))*sig
|
||||
significant = (np.abs(temp_out)> thresh_max*err)[size:2*size,size:2*size]
|
||||
# significant = (temp_out > thresh_max*err)[size:2*size,size:2*size]
|
||||
if thresh_add != 0:
|
||||
add_significant = (np.abs(temp_out)> thresh_add*err)[size:2*size,size:2*size]
|
||||
# add_significant = (temp_out > thresh_add*err)[size:2*size,size:2*size]
|
||||
adj = adjecent(significant)
|
||||
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
||||
while (add_condition).any():
|
||||
to_add = adj[0][add_condition], adj[1][add_condition]
|
||||
significant[to_add[0],to_add[1]] = True
|
||||
adj = adjecent(significant)
|
||||
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
||||
# add_condition = np.logical_and(np.abs(temp_out)[adj[0],adj[1]] >= thresh_add*err[adj[0],adj[1]], np.logical_not(significant)[adj[0],adj[1]])
|
||||
temp_out[size:2*size,size:2*size][np.logical_not(significant)] = 0
|
||||
#WRITING THE WAVELET DECOMP LAYER
|
||||
if temp_out[size:2*size,size:2*size].sum() == 0: break
|
||||
conv_out[i] = +temp_out[size:2*size,size:2*size]
|
||||
conv_out[i][conv_out[i]<0]=0 #leave only positive data to prevent problems while summing layers
|
||||
# conv_out[i] = significant
|
||||
data = conv
|
||||
conv_out[max_level] = conv[size:2*size,size:2*size]
|
||||
return conv_out
|
||||
# %%
|
Loading…
x
Reference in New Issue
Block a user