commit
This commit is contained in:
parent
9e2c094b0a
commit
486d655235
@ -1,16 +1,11 @@
|
|||||||
# %%
|
# %%
|
||||||
import import_ipynb
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import itertools
|
import itertools
|
||||||
|
|
||||||
from os import listdir, mkdir, stat
|
from os import stat
|
||||||
|
|
||||||
from scipy.signal import fftconvolve, convolve2d
|
from scipy.signal import fftconvolve, convolve2d
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from matplotlib.colors import SymLogNorm as lognorm
|
|
||||||
|
|
||||||
from astropy.io import fits
|
from astropy.io import fits
|
||||||
from astropy.wcs import WCS
|
from astropy.wcs import WCS
|
||||||
|
|
||||||
@ -203,16 +198,16 @@ class Observation:
|
|||||||
temp_out = data-conv
|
temp_out = data-conv
|
||||||
#ERRORMAP CALCULATION
|
#ERRORMAP CALCULATION
|
||||||
if thresh_max != 0:
|
if thresh_max != 0:
|
||||||
sig = sigma(mode, i)
|
sig = ((wavelet(i)**2).sum())**0.5
|
||||||
bkg = fftconvolve(data_bkg, wavelet(i),mode='same')
|
bkg = fftconvolve(data_bkg, wavelet(i),mode='same')
|
||||||
bkg[bkg<0] = 0
|
bkg[bkg<0] = 0
|
||||||
# err = (1+np.sqrt(bkg/sig**2 + 0.75))*sig**3
|
# err = (1+np.sqrt(bkg/sig**2 + 0.75))*sig**3
|
||||||
err = (1+np.sqrt(bkg+0.75))*sig
|
err = (1+np.sqrt(bkg+0.75))*sig
|
||||||
significant = (np.abs(temp_out)> thresh_max*err)[size:2*size,size:2*size]
|
# significant = (np.abs(temp_out)> thresh_max*err)[size:2*size,size:2*size]
|
||||||
# significant = (temp_out > thresh_max*err)[size:2*size,size:2*size]
|
significant = (temp_out > thresh_max*err)[size:2*size,size:2*size]
|
||||||
if thresh_add != 0:
|
if thresh_add != 0:
|
||||||
add_significant = (np.abs(temp_out)> thresh_add*err)[size:2*size,size:2*size]
|
# add_significant = (np.abs(temp_out)> thresh_add*err)[size:2*size,size:2*size]
|
||||||
# add_significant = (temp_out > thresh_add*err)[size:2*size,size:2*size]
|
add_significant = (temp_out > thresh_add*err)[size:2*size,size:2*size]
|
||||||
adj = adjecent(significant)
|
adj = adjecent(significant)
|
||||||
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
||||||
while (add_condition).any():
|
while (add_condition).any():
|
||||||
@ -223,7 +218,6 @@ class Observation:
|
|||||||
# add_condition = np.logical_and(np.abs(temp_out)[adj[0],adj[1]] >= thresh_add*err[adj[0],adj[1]], np.logical_not(significant)[adj[0],adj[1]])
|
# add_condition = np.logical_and(np.abs(temp_out)[adj[0],adj[1]] >= thresh_add*err[adj[0],adj[1]], np.logical_not(significant)[adj[0],adj[1]])
|
||||||
temp_out[size:2*size,size:2*size][np.logical_not(significant)] = 0
|
temp_out[size:2*size,size:2*size][np.logical_not(significant)] = 0
|
||||||
#WRITING THE WAVELET DECOMP LAYER
|
#WRITING THE WAVELET DECOMP LAYER
|
||||||
if temp_out[size:2*size,size:2*size].sum() == 0: break
|
|
||||||
conv_out[i] = +temp_out[size:2*size,size:2*size]
|
conv_out[i] = +temp_out[size:2*size,size:2*size]
|
||||||
conv_out[i][conv_out[i]<0]=0 #leave only positive data to prevent problems while summing layers
|
conv_out[i][conv_out[i]<0]=0 #leave only positive data to prevent problems while summing layers
|
||||||
data = conv
|
data = conv
|
||||||
|
Loading…
x
Reference in New Issue
Block a user