Added examples
This commit is contained in:
parent
fd708d8170
commit
71bed55454
66
README.md
66
README.md
@ -4,34 +4,64 @@ This pacakge is used to generate region masks separating any focused X-ray flux
|
||||
|
||||
## Installation
|
||||
This package is to be used with Python 3.x.x
|
||||
```python
|
||||
```bash
|
||||
pip install git+http://heagit.cosmos.ru/nustar/nuwavdet.git
|
||||
```
|
||||
|
||||
## Main use
|
||||
To update the package to the current version one should delete the previous version
|
||||
```bash
|
||||
pip uninstall nuwavdet
|
||||
```
|
||||
|
||||
To use the package in your project, import it in by writing:
|
||||
And simply repeat the intallation procedure again from the repository.
|
||||
|
||||
## Installation verification
|
||||
If the installation was successful the package can be used with the following import:
|
||||
|
||||
```python
|
||||
from nuwavdet import nuwavdet as nw
|
||||
```
|
||||
|
||||
The main functionality of the pacakge is presented with a single function
|
||||
To verify the installation we suggest running a simple script:
|
||||
|
||||
```python
|
||||
process(obs_path, thresh)
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
print(nw.binary_array(2))
|
||||
```
|
||||
|
||||
The output of the script should be
|
||||
|
||||
```bash
|
||||
[[False False]
|
||||
[False True]
|
||||
[ True False]
|
||||
[ True True]]
|
||||
```
|
||||
|
||||
## Main use
|
||||
|
||||
The main functionality of the package is presented with a single function
|
||||
```python
|
||||
nw.process(obs_path, thresh)
|
||||
```
|
||||
|
||||
Inputs are string with path to the _cl.evt file to use and a tuple of thresholds, e.g.
|
||||
```python
|
||||
process('D:\\Data\\obs_cl.evt', (3, 2))
|
||||
nw.process('D:\\Data\\obs_cl.evt', (3, 2))
|
||||
```
|
||||
|
||||
Outputs of the function are:
|
||||
1. dictionary with some metadata and properties of the observation after mask generation procedure.
|
||||
2. region array with mask in DET1 coordinate frame. Note that this mask is for numpy mask application so 1 corresponds to masked pixel and 0 otherwise.
|
||||
3. custom bad pixel table with flagged pixels in RAW coordinates. It can be exported as fits file or each separate table can be acessed directly.
|
||||
4. array with the sum of wavelet planes used in the processing.
|
||||
The detailed script description of the data extraction with the script is presented in the examples folder of the repository.
|
||||
|
||||
Metadata about the observation file:
|
||||
The function nw.process returns severl python objects:
|
||||
1. python-dictionary with some metadata and properties of the observation after mask generation procedure.
|
||||
2. region array with mask in DET1 coordinate frame. Note that this mask is for numpy mask application so True (1) corresponds to masked pixel and False (0) otherwise.
|
||||
3. custom bad pixel table with flagged pixels in RAW coordinates. It can be exported as fits file for further application to the nupipeline as fpma_userbpfile or fpmb_userbpfile.
|
||||
4. array with the sum of wavelet planes for potential alternative applications.
|
||||
|
||||
Metadata about the observation returned by the nw.process is:
|
||||
|
||||
Observation metadata:
|
||||
|
||||
1. OBS_ID
|
||||
2. Detector
|
||||
@ -47,14 +77,8 @@ Useful algorythm-related data:
|
||||
|
||||
## Other uses
|
||||
|
||||
You can process the cl.evt file by creating an Observation class object:
|
||||
Other possbile usecases are shown in the examples folder.
|
||||
|
||||
```python
|
||||
obs = nw.Observation(path_to_evt_file)
|
||||
```
|
||||
## Contact information
|
||||
|
||||
Additionally, the energy band in KeV to get events from can be passed as an argument. The default value is [3,20].
|
||||
|
||||
```python
|
||||
obs = nuwavsource.Observation(path_to_evt_file,E_borders=[E_min,E_max])
|
||||
```
|
||||
If you have any questions or issues with the code, feel free to contact Andrey Mukhin: amukhin@cosmos.ru
|
||||
|
54
examples/1_save_results.py
Normal file
54
examples/1_save_results.py
Normal file
@ -0,0 +1,54 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
THRESH = (3, 2)
|
||||
|
||||
SAVE_BADPIX_PATH = r'.//out//badpix.fits'
|
||||
SAVE_REGION_PATH = r'.//out//region.fits'
|
||||
SAVE_WAVSUM_PATH = r'.//out//wavsum.fits'
|
||||
|
||||
METADATA_PATH = r'.//out//metadata.csv'
|
||||
METADATA_FITS_PATH = r'.//out//metadata.fits'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# PROCESS THE OBSERVATION WITH GIVEN THRESHOLD
|
||||
result, region, region_raw, wav_sum = nw.process(OBS_PATH, thresh=THRESH)
|
||||
|
||||
# SAVE THE REGION BAD PIXEL FILES TO THE FITS FILE WITH NUPIPELINE
|
||||
# COMPATIBLE FORMAT AND HEADERS.
|
||||
region_raw.writeto(SAVE_BADPIX_PATH)
|
||||
|
||||
# SAVE REGION MASK AS A FITS IMAGE
|
||||
nw.save_region(region, SAVE_REGION_PATH, overwrite=False)
|
||||
# Note that the Python script uses numpy masked array with
|
||||
# True (1) as as masked and False (0) as unmasked pixel.
|
||||
# nw.save_region transfers the numpy masked array to
|
||||
# conventional format with 1 for unmasked and 0 for masked pixel.
|
||||
# However, if mask is used in the Python you need to transfer it back with
|
||||
# numpy.logical_not(mask).
|
||||
|
||||
# SAVE WAVSUM ARRAY AS A FITS IMAGE
|
||||
nw.fits.writeto(SAVE_WAVSUM_PATH, wav_sum, overwrite=False)
|
||||
|
||||
# SAVE METADATA
|
||||
# WE SUGGEST SAVING ALL THE METADATA FOR SEVERAL OBSERVATIONS
|
||||
# IN ONE FILE.
|
||||
|
||||
# CREATE CSV FILE TO SAVE DATA
|
||||
# IF FILE ALREADY EXISTS YOU SHOULD REMOVE THIS BLOCK FROM YOUR CODE
|
||||
table = {
|
||||
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
|
||||
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
|
||||
'count_rate': [], 'remaining_area': [], 'cash_stat': [],
|
||||
'cash_stat_full': []
|
||||
}
|
||||
out_table = nw.DataFrame(table)
|
||||
out_table.to_csv(METADATA_PATH)
|
||||
|
||||
# SAVE DATA TO CREATED CSV
|
||||
nw.DataFrame(result, index=[0]).to_csv(METADATA_PATH, mode='a', header=False)
|
||||
|
||||
# TRANSFORM THE CSV TO FITS-TABLE
|
||||
nw.csv_to_table(METADATA_PATH, METADATA_FITS_PATH)
|
33
examples/2_directory_processing.py
Normal file
33
examples/2_directory_processing.py
Normal file
@ -0,0 +1,33 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
INPUT_FOLDER = r'path_to_directory'
|
||||
OUTPUT_FOLDER = r'.//Output'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# BEGIN PROCESSING ALL THE OBSERVATIONS INSIDE THE FOLDER
|
||||
nw.process_folder(input_folder=INPUT_FOLDER,
|
||||
start_new_file='y',
|
||||
fits_folder=OUTPUT_FOLDER,
|
||||
thresh=(3, 2),
|
||||
cpu_num=10
|
||||
)
|
||||
|
||||
# IF THE PROCESSING WAS INTERRUPTED YOU CAN CONTINUE IT WITH THE SAME CODE
|
||||
# BY CHANGING THE start_new_file TO 'n'.
|
||||
|
||||
# THE STRUCTURE OF THE FOLDER IS
|
||||
# OUTPUT_FOLDER
|
||||
# __overview.csv csv-table with observations metadata
|
||||
# __overvies.fits fits-table with the same metadata
|
||||
# __overview_skipped.csv csv-table with the skipped observations
|
||||
# __Region folder for region mask images
|
||||
# ____<obsid><DET>_region.fits
|
||||
# __Region_raw folder for region masks in RAW coordinates
|
||||
# ____<obsid><DET>_reg_raw.fits
|
||||
# __Wav_sum folder for sum of wavelet layers
|
||||
# ____<obsid><DET>_wav_sum.fits
|
||||
|
||||
# Note nw.process_folder uses multiprocessing with cpu_num cores.
|
||||
# The number of cores can be manually chosen or automatically
|
||||
# detected if cpu_num = 0.
|
23
examples/3_wavelet.py
Normal file
23
examples/3_wavelet.py
Normal file
@ -0,0 +1,23 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
THRESH = (3, 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# CREATE THE OBSERVATION CLASS OBJECT
|
||||
obs = nw.Observation(OBS_PATH)
|
||||
|
||||
# CALCULATE THE WAVLET LAYERS WITH GIVEN THRESHOLD
|
||||
wav_layers = obs.wavdecomp(mode='atrous', occ_coeff=True, thresh=THRESH)
|
||||
|
||||
# ALL THE LAYERS CAN BE ACCESSED AS AN ELEMENT OF wav_layers VARIABLE
|
||||
# wav_layers[0] for the 1st wavelet layer
|
||||
# wav_layers[4] for 5th wavelet layer
|
||||
# wav_layers[-1] for the last wavelet layer
|
||||
# wav_layers[2:5] for the list of the layers from 3 to 5
|
||||
# wav_layers[[1, 3, 5]] for the list of layers 2, 4 and 6
|
||||
|
||||
# To calculate the sum of wavelet layers one should use sum() method
|
||||
# wav_layers[2:7].sum(0) returns a sum of layers from 3 to 7
|
||||
# wav_layers[[1, 3, 5]].sum(0) returns a sum of layers 2, 4 and 6.
|
23
examples/4_cstat.py
Normal file
23
examples/4_cstat.py
Normal file
@ -0,0 +1,23 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
import numpy as np
|
||||
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
MASK_PATH = r'.//path_to_mask//<obsid><DET>.fits'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# CREATE THE OBSERVATION CLASS OBJECT
|
||||
obs = nw.Observation(OBS_PATH)
|
||||
|
||||
# READ THE REGION MASK FILE
|
||||
region = nw.fits.getdata(MASK_PATH)
|
||||
|
||||
# TRANSFORM REGION MASK DATA TO NUMPY MASK DATA (SEE 1_save_results.py).
|
||||
region = np.logical_not(region.astype(bool))
|
||||
|
||||
# CREATE MASKED ARRAY CLASS OBJECT
|
||||
masked_data = np.ma.masked_array(obs, mask=region)
|
||||
|
||||
# CALCULATE THE CSTAT ON THE MASKED DATA
|
||||
print(nw.сstat(masked_data.mean(), masked_data))
|
@ -30,6 +30,14 @@ def get_link_list(folder: str, sort_list: bool = True) -> list[str]:
|
||||
return np.array(links)
|
||||
|
||||
|
||||
def csv_to_table(csv_path, fits_path):
|
||||
"""
|
||||
Transform the csv table to fits table with astropy.
|
||||
"""
|
||||
csv_file = read_csv(csv_path, index_col=0, dtype={'obs_id': str})
|
||||
Table.from_pandas(csv_file).write(fits_path, overwrite=True)
|
||||
|
||||
|
||||
def binary_array(num: int) -> list[list[bool]]:
|
||||
"""
|
||||
Returns list of all possible combinations of num of bool values.
|
||||
@ -199,7 +207,8 @@ def count_binning(array, count_per_bin: int = 2):
|
||||
|
||||
def cstat(expected, data: list, count_per_bin: int = 2) -> float:
|
||||
_data = data.flatten()
|
||||
_data = _data[_data.mask == False]
|
||||
if type(data) is np.ma.masked_array:
|
||||
_data = _data[_data.mask == False]
|
||||
_expected = expected
|
||||
c_stat = 0
|
||||
bin_sum_array, bin_count_array = count_binning(_data, count_per_bin)
|
||||
@ -493,7 +502,7 @@ def _process_multi(args):
|
||||
|
||||
|
||||
def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
thresh=None):
|
||||
thresh=None, cpu_num=0):
|
||||
"""
|
||||
Generates a fits-table of parameters, folder with mask images in DET1 and
|
||||
BADPIX tables in RAW for all observations in given folder.
|
||||
@ -585,6 +594,14 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
# START PROCESSING
|
||||
print('Started processing...')
|
||||
num = 0
|
||||
if cpu_num == 0:
|
||||
cpu_num = cpu_count()
|
||||
elif cpu_num < 0:
|
||||
raise ValueError('cpu_num must be a positive integer')
|
||||
elif cpu_num > cpu_count():
|
||||
print('Chosen cpu_num exceed the number of CPU cores. Using cpu_count() instead.')
|
||||
cpu_num = cpu_count()
|
||||
|
||||
for group_idx in range(len(obs_list)//group_size+1):
|
||||
print(f'Started group {group_idx}')
|
||||
group_list = obs_list[group_size*group_idx:min(group_size*(group_idx+1), len(obs_list))]
|
||||
@ -592,7 +609,7 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
os.stat(file).st_size/2**20
|
||||
for file in group_list
|
||||
]).max()
|
||||
process_num = (cpu_count() if max_size < 50 else (cpu_count()//2 if max_size < 200 else (cpu_count()//4 if max_size < 1000 else 1)))
|
||||
process_num = (cpu_num if max_size < 50 else (cpu_num//2 if max_size < 200 else cpu_num//4 if max_size < 1000 else cpu_num//8))
|
||||
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
|
||||
with get_context('spawn').Pool(processes=process_num) as pool:
|
||||
packed_args = map(lambda _: (_, thresh), group_list)
|
||||
|
6
setup.py
6
setup.py
@ -5,10 +5,10 @@ with open("README.md", "r") as fh:
|
||||
|
||||
setuptools.setup(
|
||||
name="nuwavdet",
|
||||
version="0.1.0",
|
||||
version="0.1.1",
|
||||
author="Andrey Mukhin",
|
||||
author_email="amukhin@phystech.edu",
|
||||
description="A package for source exclusion in NuStar observation data using wavelet decomposition",
|
||||
author_email="amukhin@cosmos.ru",
|
||||
description="A package for source exclusion in NuSTAR observation data using wavelet decomposition",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/andrey-rrousan/nuwavdet",
|
||||
|
62
test.ipynb
Normal file
62
test.ipynb
Normal file
@ -0,0 +1,62 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nuwavdet import nuwavdet as nw"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[[False False]\n",
|
||||
" [False True]\n",
|
||||
" [ True False]\n",
|
||||
" [ True True]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(nw.binary_array(2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user