Compare commits
No commits in common. "master" and "code_trimming" have entirely different histories.
master
...
code_trimm
@ -1,3 +1,2 @@
|
||||
include nuwavdet/pixpos/*
|
||||
include nuwavdet/badpix_headers/*
|
||||
|
||||
include nuwavsource/pixpos/*
|
||||
include nuwavsource/badpix_headers/*
|
101
README.md
101
README.md
@ -1,67 +1,10 @@
|
||||
# nuwavdet
|
||||
# nuwavsource
|
||||
|
||||
This pacakge is used to generate region masks separating any focused X-ray flux from background signal in NuSTAR observations.
|
||||
This package is supposed to be used to detect the sources in NuStar observations and generate a mask excluding the signal from the sources of any kind.
|
||||
|
||||
## Installation
|
||||
This package is to be used with Python 3.x.x
|
||||
```bash
|
||||
pip install git+http://heagit.cosmos.ru/nustar/nuwavdet.git
|
||||
```
|
||||
Additionaly, it generates a table containing:
|
||||
|
||||
To update the package to the current version one should delete the previous version
|
||||
```bash
|
||||
pip uninstall nuwavdet
|
||||
```
|
||||
|
||||
And simply repeat the intallation procedure again from the repository.
|
||||
|
||||
## Installation verification
|
||||
If the installation was successful the package can be used with the following import:
|
||||
|
||||
```python
|
||||
from nuwavdet import nuwavdet as nw
|
||||
```
|
||||
|
||||
To verify the installation we suggest running a simple script:
|
||||
|
||||
```python
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
print(nw.binary_array(2))
|
||||
```
|
||||
|
||||
The output of the script should be
|
||||
|
||||
```bash
|
||||
[[False False]
|
||||
[False True]
|
||||
[ True False]
|
||||
[ True True]]
|
||||
```
|
||||
|
||||
## Main use
|
||||
|
||||
The main functionality of the package is presented with a single function
|
||||
```python
|
||||
nw.process(obs_path, thresh)
|
||||
```
|
||||
|
||||
Inputs are string with path to the _cl.evt file to use and a tuple of thresholds, e.g.
|
||||
```python
|
||||
nw.process('D:\\Data\\obs_cl.evt', (3, 2))
|
||||
```
|
||||
|
||||
The detailed script description of the data extraction with the script is presented in the examples folder of the repository.
|
||||
|
||||
The function nw.process returns severl python objects:
|
||||
1. python-dictionary with some metadata and properties of the observation after mask generation procedure.
|
||||
2. region array with mask in DET1 coordinate frame. Note that this mask is for numpy mask application so True (1) corresponds to masked pixel and False (0) otherwise.
|
||||
3. custom bad pixel table with flagged pixels in RAW coordinates. It can be exported as fits file for further application to the nupipeline as fpma_userbpfile or fpmb_userbpfile.
|
||||
4. array with the sum of wavelet planes for potential alternative applications.
|
||||
|
||||
Metadata about the observation returned by the nw.process is:
|
||||
|
||||
Observation metadata:
|
||||
Useful data about the observation:
|
||||
|
||||
1. OBS_ID
|
||||
2. Detector
|
||||
@ -71,14 +14,36 @@ Observation metadata:
|
||||
|
||||
Useful algorythm-related data:
|
||||
|
||||
6. Average count rate of unmasked area
|
||||
7. Fraction of unmasked area
|
||||
8. Modified Cash-statistic per bin before and after masking the detected sources
|
||||
6. Average count rate on unmasked area
|
||||
7. Portion of unmasked area
|
||||
8. Specific statistical metric[1] before and after masking the detected sources
|
||||
9. Root-mean-square of counts in unmasked area
|
||||
|
||||
## Other uses
|
||||
## Installation
|
||||
This package is to be used with Python 3.x.x
|
||||
|
||||
Other possbile usecases are shown in the examples folder.
|
||||
To install tha package write
|
||||
|
||||
## Contact information
|
||||
```bash
|
||||
pip install nuwavsource
|
||||
```
|
||||
|
||||
If you have any questions or issues with the code, feel free to contact Andrey Mukhin: amukhin@cosmos.ru
|
||||
## Usage
|
||||
|
||||
To use the package in your project, import it in by writing
|
||||
|
||||
```python
|
||||
from nuwavsource import nuwavsource
|
||||
```
|
||||
|
||||
You can process the cl.evt file by creating an Observation class object:
|
||||
|
||||
```python
|
||||
obs = nuwavsource.Observation(path_to_evt_file)
|
||||
```
|
||||
|
||||
Additionally, the energy band in KeV to get events from can be passed as an argument. The default value is [3,20].
|
||||
|
||||
```python
|
||||
obs = nuwavsource.Observation(path_to_evt_file,E_borders=[E_min,E_max])
|
||||
```
|
||||
|
@ -1,54 +0,0 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
THRESH = (3, 2)
|
||||
|
||||
SAVE_BADPIX_PATH = r'.//out//badpix.fits'
|
||||
SAVE_REGION_PATH = r'.//out//region.fits'
|
||||
SAVE_WAVSUM_PATH = r'.//out//wavsum.fits'
|
||||
|
||||
METADATA_PATH = r'.//out//metadata.csv'
|
||||
METADATA_FITS_PATH = r'.//out//metadata.fits'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# PROCESS THE OBSERVATION WITH GIVEN THRESHOLD
|
||||
result, region, region_raw, wav_sum = nw.process(OBS_PATH, thresh=THRESH)
|
||||
|
||||
# SAVE THE REGION BAD PIXEL FILES TO THE FITS FILE WITH NUPIPELINE
|
||||
# COMPATIBLE FORMAT AND HEADERS.
|
||||
region_raw.writeto(SAVE_BADPIX_PATH)
|
||||
|
||||
# SAVE REGION MASK AS A FITS IMAGE
|
||||
nw.save_region(region, SAVE_REGION_PATH, overwrite=False)
|
||||
# Note that the Python script uses numpy masked array with
|
||||
# True (1) as as masked and False (0) as unmasked pixel.
|
||||
# nw.save_region transfers the numpy masked array to
|
||||
# conventional format with 1 for unmasked and 0 for masked pixel.
|
||||
# However, if mask is used in the Python you need to transfer it back with
|
||||
# numpy.logical_not(mask).
|
||||
|
||||
# SAVE WAVSUM ARRAY AS A FITS IMAGE
|
||||
nw.fits.writeto(SAVE_WAVSUM_PATH, wav_sum, overwrite=False)
|
||||
|
||||
# SAVE METADATA
|
||||
# WE SUGGEST SAVING ALL THE METADATA FOR SEVERAL OBSERVATIONS
|
||||
# IN ONE FILE.
|
||||
|
||||
# CREATE CSV FILE TO SAVE DATA
|
||||
# IF FILE ALREADY EXISTS YOU SHOULD REMOVE THIS BLOCK FROM YOUR CODE
|
||||
table = {
|
||||
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
|
||||
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
|
||||
'count_rate': [], 'remaining_area': [], 'cash_stat': [],
|
||||
'cash_stat_full': []
|
||||
}
|
||||
out_table = nw.DataFrame(table)
|
||||
out_table.to_csv(METADATA_PATH)
|
||||
|
||||
# SAVE DATA TO CREATED CSV
|
||||
nw.DataFrame(result, index=[0]).to_csv(METADATA_PATH, mode='a', header=False)
|
||||
|
||||
# TRANSFORM THE CSV TO FITS-TABLE
|
||||
nw.csv_to_table(METADATA_PATH, METADATA_FITS_PATH)
|
@ -1,33 +0,0 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
INPUT_FOLDER = r'path_to_directory'
|
||||
OUTPUT_FOLDER = r'.//Output'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# BEGIN PROCESSING ALL THE OBSERVATIONS INSIDE THE FOLDER
|
||||
nw.process_folder(input_folder=INPUT_FOLDER,
|
||||
start_new_file='y',
|
||||
fits_folder=OUTPUT_FOLDER,
|
||||
thresh=(3, 2),
|
||||
cpu_num=10
|
||||
)
|
||||
|
||||
# IF THE PROCESSING WAS INTERRUPTED YOU CAN CONTINUE IT WITH THE SAME CODE
|
||||
# BY CHANGING THE start_new_file TO 'n'.
|
||||
|
||||
# THE STRUCTURE OF THE FOLDER IS
|
||||
# OUTPUT_FOLDER
|
||||
# __overview.csv csv-table with observations metadata
|
||||
# __overvies.fits fits-table with the same metadata
|
||||
# __overview_skipped.csv csv-table with the skipped observations
|
||||
# __Region folder for region mask images
|
||||
# ____<obsid><DET>_region.fits
|
||||
# __Region_raw folder for region masks in RAW coordinates
|
||||
# ____<obsid><DET>_reg_raw.fits
|
||||
# __Wav_sum folder for sum of wavelet layers
|
||||
# ____<obsid><DET>_wav_sum.fits
|
||||
|
||||
# Note nw.process_folder uses multiprocessing with cpu_num cores.
|
||||
# The number of cores can be manually chosen or automatically
|
||||
# detected if cpu_num = 0.
|
@ -1,23 +0,0 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
THRESH = (3, 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# CREATE THE OBSERVATION CLASS OBJECT
|
||||
obs = nw.Observation(OBS_PATH)
|
||||
|
||||
# CALCULATE THE WAVLET LAYERS WITH GIVEN THRESHOLD
|
||||
wav_layers = obs.wavdecomp(mode='atrous', occ_coeff=True, thresh=THRESH)
|
||||
|
||||
# ALL THE LAYERS CAN BE ACCESSED AS AN ELEMENT OF wav_layers VARIABLE
|
||||
# wav_layers[0] for the 1st wavelet layer
|
||||
# wav_layers[4] for 5th wavelet layer
|
||||
# wav_layers[-1] for the last wavelet layer
|
||||
# wav_layers[2:5] for the list of the layers from 3 to 5
|
||||
# wav_layers[[1, 3, 5]] for the list of layers 2, 4 and 6
|
||||
|
||||
# To calculate the sum of wavelet layers one should use sum() method
|
||||
# wav_layers[2:7].sum(0) returns a sum of layers from 3 to 7
|
||||
# wav_layers[[1, 3, 5]].sum(0) returns a sum of layers 2, 4 and 6.
|
@ -1,23 +0,0 @@
|
||||
from nuwavdet import nuwavdet as nw
|
||||
import numpy as np
|
||||
|
||||
|
||||
OBS_PATH = r'.//path_to_obs//nu<obsid><DET>01_cl.evt'
|
||||
MASK_PATH = r'.//path_to_mask//<obsid><DET>.fits'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# CREATE THE OBSERVATION CLASS OBJECT
|
||||
obs = nw.Observation(OBS_PATH)
|
||||
|
||||
# READ THE REGION MASK FILE
|
||||
region = nw.fits.getdata(MASK_PATH)
|
||||
|
||||
# TRANSFORM REGION MASK DATA TO NUMPY MASK DATA (SEE 1_save_results.py).
|
||||
region = np.logical_not(region.astype(bool))
|
||||
|
||||
# CREATE MASKED ARRAY CLASS OBJECT
|
||||
masked_data = np.ma.masked_array(obs, mask=region)
|
||||
|
||||
# CALCULATE THE CSTAT ON THE MASKED DATA
|
||||
print(nw.сstat(masked_data.mean(), masked_data))
|
@ -1 +0,0 @@
|
||||
name = 'nuwavdet'
|
1
nuwavsource/__init__.py
Normal file
1
nuwavsource/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
name = 'nuwavsource'
|
BIN
nuwavsource/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
nuwavsource/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
nuwavsource/__pycache__/nuwavsource.cpython-39.pyc
Normal file
BIN
nuwavsource/__pycache__/nuwavsource.cpython-39.pyc
Normal file
Binary file not shown.
@ -1,18 +1,17 @@
|
||||
import itertools
|
||||
# %%
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import itertools
|
||||
from pandas import DataFrame, read_csv
|
||||
from scipy.signal import fftconvolve
|
||||
|
||||
from astropy import units as u
|
||||
from astropy.table import Table
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy import units as u
|
||||
from multiprocessing import get_context, cpu_count
|
||||
from time import perf_counter
|
||||
from os import stat, makedirs
|
||||
from os.path import dirname
|
||||
from scipy.signal import fftconvolve, convolve2d
|
||||
from astropy.io import fits
|
||||
from astropy.wcs import WCS
|
||||
|
||||
from time import perf_counter
|
||||
from multiprocessing import get_context, cpu_count
|
||||
from glob import glob
|
||||
from warnings import filterwarnings
|
||||
filterwarnings('ignore')
|
||||
@ -22,22 +21,14 @@ def get_link_list(folder: str, sort_list: bool = True) -> list[str]:
|
||||
"""
|
||||
Returns array of paths to all *_cl.evt files in the directory recursively.
|
||||
"""
|
||||
links = glob(os.path.join(folder, '**', '*_cl.evt'), recursive=True)
|
||||
links = glob(f'{folder}\\**\\*_cl.evt', recursive=True)
|
||||
if sort_list:
|
||||
sorted_list = sorted(links, key=lambda x: os.stat(x).st_size)
|
||||
sorted_list = sorted(links, key=lambda x: stat(x).st_size)
|
||||
return np.array(sorted_list)
|
||||
else:
|
||||
return np.array(links)
|
||||
|
||||
|
||||
def csv_to_table(csv_path, fits_path):
|
||||
"""
|
||||
Transform the csv table to fits table with astropy.
|
||||
"""
|
||||
csv_file = read_csv(csv_path, index_col=0, dtype={'obs_id': str})
|
||||
Table.from_pandas(csv_file).write(fits_path, overwrite=True)
|
||||
|
||||
|
||||
def binary_array(num: int) -> list[list[bool]]:
|
||||
"""
|
||||
Returns list of all possible combinations of num of bool values.
|
||||
@ -161,7 +152,7 @@ def add_borders(array, middle=True):
|
||||
return mask
|
||||
|
||||
|
||||
def fill_poisson(array, size_input=15):
|
||||
def fill_poisson(array, size_input=32):
|
||||
"""
|
||||
Fills all masked elements of an array with poisson signal with local expected value.
|
||||
"""
|
||||
@ -171,17 +162,14 @@ def fill_poisson(array, size_input=15):
|
||||
size = size_input
|
||||
output = array.data.copy()
|
||||
mask = array.mask.copy()
|
||||
mask_full = np.ones(mask.shape)
|
||||
while mask.sum() > 1:
|
||||
kernel = np.ones((size, size))/size**2
|
||||
coeff_full = fftconvolve(mask_full, kernel, mode='same')
|
||||
coeff = fftconvolve(np.logical_not(mask), kernel, mode='same') / coeff_full
|
||||
coeff = fftconvolve(np.logical_not(mask), kernel, mode='same')
|
||||
mean = fftconvolve(output, kernel, mode='same')
|
||||
idx = np.where(np.logical_and(mask, coeff > 0.7))
|
||||
idx = np.where(np.logical_and(mask, coeff > 0.1))
|
||||
output[idx] = np.random.poisson(np.abs(mean[idx]/coeff[idx]))
|
||||
mask[idx] = False
|
||||
size += size_input
|
||||
size += (1 - size % 2)
|
||||
size *= 2
|
||||
return output
|
||||
|
||||
|
||||
@ -207,7 +195,6 @@ def count_binning(array, count_per_bin: int = 2):
|
||||
|
||||
def cstat(expected, data: list, count_per_bin: int = 2) -> float:
|
||||
_data = data.flatten()
|
||||
if type(data) is np.ma.masked_array:
|
||||
_data = _data[_data.mask == False]
|
||||
_expected = expected
|
||||
c_stat = 0
|
||||
@ -244,7 +231,7 @@ class Observation:
|
||||
resized_coeff = (coeff).reshape(2, 2).repeat(180, 0).repeat(180, 1)
|
||||
return resized_coeff
|
||||
|
||||
def get_data(self, file, E_borders=[3, 20], generate_mask=True):
|
||||
def get_data(self, file, E_borders=[3, 20]):
|
||||
"""
|
||||
Returns masked array with DET1 image data for given energy band.
|
||||
Mask is created from observations badpix tables and to mask the border and gaps.
|
||||
@ -257,23 +244,21 @@ class Observation:
|
||||
data_mask = data[np.logical_not(idx_mask)]
|
||||
build_hist = lambda array: np.histogram2d(array['DET1Y'], array['DET1X'], 360, [[0, 360], [0, 360]])[0]
|
||||
output = build_hist(data_output)
|
||||
if generate_mask:
|
||||
mask = build_hist(data_mask)
|
||||
mask = np.logical_or(mask, add_borders(output))
|
||||
mask = np.logical_or(mask, self.get_bad_pix(file))
|
||||
return output, mask
|
||||
return output
|
||||
|
||||
def get_bad_pix(self, file, threshold=0.9):
|
||||
"""
|
||||
Creates a mask for observation based on badpix tables.
|
||||
"""
|
||||
current_dir = os.path.dirname(__file__)
|
||||
current_dir = dirname(__file__)
|
||||
output = np.ones((360, 360))
|
||||
for det_id in range(4):
|
||||
badpix = file[3 + det_id].data
|
||||
badpix_exp = (badpix['TIME_STOP'] - badpix['TIME'])/self.exposure
|
||||
pixpos = np.load(os.path.join(current_dir, 'pixpos', f'ref_pix{self.det}{det_id}.npy'), allow_pickle=True).item()
|
||||
pixpos = np.load(f'{current_dir}\\pixpos\\ref_pix{self.det}{det_id}.npy', allow_pickle=True).item()
|
||||
for raw_x, raw_y, exp in zip(badpix['RAWX'], badpix['RAWY'], badpix_exp):
|
||||
y, x = pixpos[(raw_x, raw_y)]
|
||||
output[x-3:x+11, y-3:y+11] -= exp
|
||||
@ -287,7 +272,7 @@ class Observation:
|
||||
correction_poiss = np.random.poisson(corr*array, corr.shape)
|
||||
return array + correction_poiss
|
||||
|
||||
def wavdecomp(self, mode='gauss', thresh=0, occ_coeff=False):
|
||||
def wavdecomp(self, mode='gauss', thresh=False, occ_coeff=False):
|
||||
"""
|
||||
Performs a wavelet decomposition of image.
|
||||
"""
|
||||
@ -316,6 +301,9 @@ class Observation:
|
||||
temp_out = data-conv
|
||||
# ERRORMAP CALCULATION
|
||||
if thresh_max != 0:
|
||||
if mode == 'gauss':
|
||||
sig = ((wavelet(i)**2).sum())**0.5
|
||||
if mode == 'atrous':
|
||||
sig = atrous_sig(i)
|
||||
bkg = fftconvolve(data, wavelet(i), mode='same')
|
||||
bkg[bkg < 0] = 0
|
||||
@ -341,19 +329,19 @@ class Observation:
|
||||
"""
|
||||
Returns a hdu_list with positions of masked pixels in RAW coordinates.
|
||||
"""
|
||||
y_region, x_region = np.where(region)
|
||||
x_region, y_region = np.where(region)
|
||||
hdus = []
|
||||
for i in range(4):
|
||||
current_dir = os.path.dirname(__file__)
|
||||
pixpos = Table(fits.getdata(os.path.join(current_dir, 'pixpos', f'nu{self.det}pixpos20100101v007.fits'), i+1))
|
||||
current_dir = dirname(__file__)
|
||||
pixpos = Table(fits.getdata(f'{current_dir}\\pixpos\\nu{self.det}pixpos20100101v007.fits', i+1))
|
||||
pixpos = pixpos[pixpos['REF_DET1X'] != -1]
|
||||
|
||||
ref_condition = np.zeros(len(pixpos['REF_DET1X']), dtype=bool)
|
||||
test = np.zeros(len(pixpos['REF_DET1X']), dtype=bool)
|
||||
for idx, (x, y) in enumerate(zip(pixpos['REF_DET1X'], pixpos['REF_DET1Y'])):
|
||||
ref_condition[idx] = np.logical_and(np.equal(x, x_region), np.equal(y, y_region)).any()
|
||||
test[idx] = np.logical_and(np.equal(x, x_region), np.equal(y, y_region)).any()
|
||||
|
||||
positions = np.array((pixpos['RAWX'][ref_condition], pixpos['RAWY'][ref_condition]))
|
||||
if sum(ref_condition) != 0:
|
||||
positions = np.array((pixpos['RAWX'][test], pixpos['RAWY'][test]))
|
||||
if sum(test) != 0:
|
||||
positions = np.unique(positions, axis=1)
|
||||
rawx, rawy = positions[0], positions[1]
|
||||
|
||||
@ -369,13 +357,13 @@ class Observation:
|
||||
|
||||
hdu = fits.BinTableHDU.from_columns(columns)
|
||||
naxis1, naxis2 = hdu.header['NAXIS1'], hdu.header['NAXIS2']
|
||||
hdu.header = fits.Header.fromtextfile(os.path.join(current_dir, 'badpix_headers', f'nu{self.det}userbadpixDET{i}.txt'))
|
||||
hdu.header = fits.Header.fromtextfile(f'{current_dir}\\badpix_headers\\nu{self.det}userbadpixDET{i}.txt')
|
||||
hdu.header['NAXIS1'] = naxis1
|
||||
hdu.header['NAXIS2'] = naxis2
|
||||
hdus.append(hdu)
|
||||
|
||||
primary_hdu = fits.PrimaryHDU()
|
||||
primary_hdu.header = fits.Header.fromtextfile(os.path.join(current_dir, 'badpix_headers', f'nu{self.det}userbadpix_main.txt'))
|
||||
primary_hdu.header = fits.Header.fromtextfile(f'{current_dir}\\badpix_headers\\nu{self.det}userbadpix_main.txt')
|
||||
hdu_list = fits.HDUList([
|
||||
primary_hdu,
|
||||
*hdus
|
||||
@ -383,51 +371,28 @@ class Observation:
|
||||
return hdu_list
|
||||
|
||||
|
||||
def save_region(region, path, overwrite=False):
|
||||
def process(args):
|
||||
"""
|
||||
Converts region from numpy mask notation (1 for masked, 0 otherwise)
|
||||
to standart notation (0 for masked, 1 otherwise).
|
||||
Saves the region as fits file according to given path.
|
||||
Creates a mask using wavelet decomposition and produces some statistical and metadata about the passed observation.
|
||||
args must contain two arguments: path to the file of interest and threshold, e.g. ('D:\Data\obs_cl.evt',(5,2))
|
||||
"""
|
||||
fits.writeto(f'{path}',
|
||||
np.logical_not(region).astype(int),
|
||||
overwrite=overwrite)
|
||||
|
||||
|
||||
def process(obs_path, thresh):
|
||||
"""
|
||||
Creates a mask using wavelet decomposition and produces some stats
|
||||
and metadata about the passed observation.
|
||||
Arguments: path to the file of interest and threshold,
|
||||
e.g. process('D:\\Data\\obs_cl.evt', (3, 2))
|
||||
"""
|
||||
|
||||
table = {
|
||||
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
|
||||
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
|
||||
'count_rate': [], 'remaining_area': [], 'cash_stat': [],
|
||||
'cash_stat_full': []
|
||||
}
|
||||
|
||||
obs_path, thresh = args
|
||||
bin_num = 6
|
||||
try:
|
||||
obs = Observation(obs_path)
|
||||
sky_coord = SkyCoord(ra=obs.ra*u.deg,
|
||||
dec=obs.dec*u.deg,
|
||||
frame='fk5').transform_to('galactic')
|
||||
sky_coord = SkyCoord(ra=obs.ra*u.deg, dec=obs.dec*u.deg, frame='fk5').transform_to('galactic')
|
||||
lon, lat = sky_coord.l.value, sky_coord.b.value
|
||||
useful_bin_num = 6
|
||||
rem_signal, rem_area, poiss_comp, rms = np.zeros((4, 2**useful_bin_num))
|
||||
rem_signal, rem_area, poiss_comp, rms = np.zeros((4, 2**bin_num))
|
||||
region = np.zeros(obs.data.shape, dtype=bool)
|
||||
region_raw = -1
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
masked_obs = np.ma.masked_array(obs.data, mask=region)
|
||||
good_lvl = np.zeros(useful_bin_num, dtype=bool)
|
||||
good_lvl = np.zeros(bin_num, dtype=bool)
|
||||
good_idx = 0
|
||||
if obs.exposure > 1000:
|
||||
wav_obs = obs.wavdecomp('atrous', thresh, occ_coeff=True)
|
||||
wav_sum = wav_obs[2:-1].sum(0)
|
||||
occ_coeff = obs.get_coeff()
|
||||
binary_arr = binary_array(useful_bin_num)
|
||||
good_idx = len(binary_arr) - 1
|
||||
binary_arr = binary_array(bin_num)
|
||||
|
||||
for idx, lvl in enumerate(binary_arr):
|
||||
try:
|
||||
@ -435,30 +400,30 @@ def process(obs_path, thresh):
|
||||
except ValueError:
|
||||
region = np.zeros(obs.data.shape, dtype=bool)
|
||||
|
||||
masked_obs = np.ma.masked_array(obs.data,
|
||||
mask=region) * occ_coeff
|
||||
rem_region = np.logical_and(region,
|
||||
np.logical_not(obs.data.mask))
|
||||
masked_obs = np.ma.masked_array(obs.data, mask=region)*occ_coeff
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
rem_signal[idx] = 1-obs.data[region].sum()/obs.data.sum()
|
||||
rem_area[idx] = 1 - rem_region.sum() / np.logical_not(obs.data.mask).sum()
|
||||
rem_area[idx] = 1 - rem_region.sum()/np.logical_not(obs.data.mask).sum()
|
||||
poiss_comp[idx] = cstat(masked_obs.mean(), masked_obs)
|
||||
rms[idx] = np.sqrt(((masked_obs-masked_obs.mean())**2).mean())
|
||||
|
||||
for idx in range(len(poiss_comp)):
|
||||
if ((poiss_comp[idx] < poiss_comp[-1] + 0.05) and
|
||||
(rem_area[idx] > rem_area[good_idx])):
|
||||
if ((poiss_comp[idx] < poiss_comp[good_idx]) and
|
||||
(poiss_comp[idx] < poiss_comp[-1] + 0.05) and
|
||||
(rem_area[idx] > rem_area[-1])):
|
||||
good_idx = idx
|
||||
if good_idx == 0:
|
||||
good_idx = len(binary_arr) - 1
|
||||
good_lvl = binary_arr[good_idx]
|
||||
|
||||
try:
|
||||
region = wav_obs[2:-1][good_lvl].sum(0) > 0
|
||||
if region.sum() > 0:
|
||||
region_raw = obs.region_to_raw(region.astype(int))
|
||||
except ValueError:
|
||||
region = np.zeros(obs.data.shape, dtype=bool)
|
||||
region_raw = obs.region_to_raw(region.astype(int))
|
||||
masked_obs = np.ma.masked_array(obs.data, mask=region)
|
||||
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
||||
|
||||
to_table = [obs.obs_id,
|
||||
obs.det,
|
||||
obs.ra,
|
||||
@ -471,10 +436,9 @@ def process(obs_path, thresh):
|
||||
1 - rem_region.sum()/np.logical_not(obs.data.mask).sum(), # rem_area
|
||||
poiss_comp[good_idx],
|
||||
poiss_comp[0],
|
||||
rms[good_idx]
|
||||
]
|
||||
|
||||
else:
|
||||
wav_sum = np.zeros((360, 360))
|
||||
to_table = [obs.obs_id,
|
||||
obs.det,
|
||||
obs.ra,
|
||||
@ -488,24 +452,16 @@ def process(obs_path, thresh):
|
||||
-1, # rem_area
|
||||
-1,
|
||||
-1,
|
||||
-1
|
||||
]
|
||||
|
||||
for key, value in zip(table.keys(), to_table):
|
||||
table[key] = value
|
||||
return table, region.astype(int), region_raw, wav_sum
|
||||
return to_table, region.astype(int), region_raw
|
||||
except TypeError:
|
||||
return obs_path, -1, -1, -1
|
||||
return obs_path, -1, -1
|
||||
|
||||
|
||||
def _process_multi(args):
|
||||
return process(*args)
|
||||
|
||||
|
||||
def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
thresh=None, cpu_num=0):
|
||||
def process_folder(input_folder=None, start_new_file=None, fits_folder=None, thresh=None):
|
||||
"""
|
||||
Generates a fits-table of parameters, folder with mask images in DET1 and
|
||||
BADPIX tables in RAW for all observations in given folder.
|
||||
Generates a fits-table of parameters, folder with mask images in DET1 and BADPIX tables in RAW for all observations in given folder.
|
||||
Note that observations with exposure < 1000 sec a skipped.
|
||||
start_new_file can be either 'y' or 'n'.
|
||||
thresh must be a tuple, e.g. (5,2).
|
||||
@ -525,13 +481,10 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
print('Cannot interprete input, closing script')
|
||||
raise SystemExit(0)
|
||||
if not (fits_folder):
|
||||
print('Enter path to the output folder')
|
||||
print(f'Enter path to the output folder')
|
||||
fits_folder = input()
|
||||
|
||||
region_folder = os.path.join(fits_folder, 'Region')
|
||||
region_raw_folder = os.path.join(fits_folder, 'Region_raw')
|
||||
wav_sum_folder = os.path.join(fits_folder, 'Wav_sum')
|
||||
|
||||
region_folder = f'{fits_folder}\\Region'
|
||||
region_raw_folder = f'{fits_folder}\\Region_raw'
|
||||
if not thresh:
|
||||
print('Enter threshold values for wavelet decomposition:')
|
||||
print('General threshold:')
|
||||
@ -543,29 +496,31 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
obs_list = get_link_list(input_folder, sort_list=True)
|
||||
start = perf_counter()
|
||||
group_size = 50
|
||||
os.makedirs(region_folder, exist_ok=True)
|
||||
os.makedirs(region_raw_folder, exist_ok=True)
|
||||
os.makedirs(wav_sum_folder, exist_ok=True)
|
||||
makedirs(region_folder, exist_ok=True)
|
||||
makedirs(region_raw_folder, exist_ok=True)
|
||||
# FILTERING BY THE FILE SIZE
|
||||
print(f'Finished scanning folders. Found {len(obs_list)} observations.')
|
||||
table = {
|
||||
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
|
||||
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
|
||||
'count_rate': [], 'remaining_area': [], 'cash_stat': [],
|
||||
'cash_stat_full': []
|
||||
'count_rate': [], 'remaining_area': [], 'poisson_stat': [],
|
||||
'poisson_stat_full': [], 'rms': []
|
||||
}
|
||||
if start_new:
|
||||
out_table = DataFrame(table)
|
||||
out_table.to_csv(os.path.join(fits_folder, 'overview.csv'))
|
||||
out_table.to_csv(os.path.join(fits_folder, 'overview_skipped.csv'))
|
||||
out_table.to_csv(f'{fits_folder}\\test.csv')
|
||||
out_table.to_csv(f'{fits_folder}\\test_skipped.csv')
|
||||
# FILTERING OUT PROCESSED OBSERVATIONS
|
||||
already_processed_list = read_csv(
|
||||
os.path.join(fits_folder, 'overview.csv'), index_col=0, dtype={'obs_id': str}
|
||||
f'{fits_folder}\\test.csv',
|
||||
index_col=0,
|
||||
dtype={'obs_id': str}
|
||||
)
|
||||
already_skipped_list = read_csv(
|
||||
os.path.join(fits_folder, 'overview_skipped.csv'), index_col=0, dtype={'obs_id': str}
|
||||
f'{fits_folder}\\test_skipped.csv',
|
||||
index_col=0,
|
||||
dtype={'obs_id': str}
|
||||
)
|
||||
|
||||
already_processed = (
|
||||
already_processed_list['obs_id'].astype(str) +
|
||||
already_processed_list['detector']
|
||||
@ -574,7 +529,6 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
already_skipped_list['obs_id'].astype(str) +
|
||||
already_skipped_list['detector']
|
||||
).values
|
||||
|
||||
obs_list_names = [
|
||||
curr[curr.index('nu')+2:curr.index('_cl.evt')-2]
|
||||
for curr in obs_list
|
||||
@ -587,56 +541,44 @@ def process_folder(input_folder=None, start_new_file=None, fits_folder=None,
|
||||
(curr not in already_skipped)
|
||||
for curr in obs_list_names
|
||||
])
|
||||
|
||||
obs_list = obs_list[np.logical_and(not_processed, not_skipped)]
|
||||
print('Removed already processed observations.',
|
||||
f'{len(obs_list)} observations remain.')
|
||||
print(f'Removed already processed observations. {len(obs_list)} observations remain.')
|
||||
# START PROCESSING
|
||||
print('Started processing...')
|
||||
num = 0
|
||||
if cpu_num == 0:
|
||||
cpu_num = cpu_count()
|
||||
elif cpu_num < 0:
|
||||
raise ValueError('cpu_num must be a positive integer')
|
||||
elif cpu_num > cpu_count():
|
||||
print('Chosen cpu_num exceed the number of CPU cores. Using cpu_count() instead.')
|
||||
cpu_num = cpu_count()
|
||||
|
||||
for group_idx in range(len(obs_list)//group_size+1):
|
||||
print(f'Started group {group_idx}')
|
||||
group_list = obs_list[group_size*group_idx:min(group_size*(group_idx+1), len(obs_list))]
|
||||
max_size = np.array([
|
||||
os.stat(file).st_size/2**20
|
||||
stat(file).st_size/2**20
|
||||
for file in group_list
|
||||
]).max()
|
||||
process_num = (cpu_num if max_size < 50 else (cpu_num//2 if max_size < 200 else cpu_num//4 if max_size < 1000 else cpu_num//8))
|
||||
process_num = (cpu_count() if max_size < 50 else (cpu_count()//2 if max_size < 200 else (cpu_count()//4 if max_size < 1000 else 1)))
|
||||
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
|
||||
with get_context('spawn').Pool(processes=process_num) as pool:
|
||||
packed_args = map(lambda _: (_, thresh), group_list)
|
||||
for result, region, region_raw, wav_sum in pool.imap(_process_multi, packed_args):
|
||||
for result, region, region_raw in pool.imap(process, packed_args):
|
||||
if type(result) is np.str_:
|
||||
obs_id = result[result.index('nu'):result.index('_cl.evt')]
|
||||
print(f'{num:>3} is skipped. File {obs_id}')
|
||||
num += 1
|
||||
continue
|
||||
|
||||
obs_name = str(result['obs_id'])+result['detector']
|
||||
if result['exposure'] < 1000:
|
||||
print(f'{num:>3} {obs_name} is skipped. Exposure < 1000')
|
||||
DataFrame(result, index=[0]).to_csv(os.path.join(fits_folder, 'overview_skipped.csv'), mode='a', header=False)
|
||||
num += 1
|
||||
for key, value in zip(table.keys(), result):
|
||||
table[key] = [value]
|
||||
if table['exposure'][0] < 1000:
|
||||
print(f'{num:>3} {str(result[0])+result[1]} is skipped. Exposure < 1000')
|
||||
DataFrame(table).to_csv(f'{fits_folder}\\test_skipped.csv', mode='a', header=False)
|
||||
num +=1
|
||||
continue
|
||||
|
||||
DataFrame(result, index=[0]).to_csv(os.path.join(fits_folder, 'overview.csv'), mode='a', header=False)
|
||||
save_region(region, os.path.join(region_folder, f'{obs_name}_region.fits'), overwrite=True)
|
||||
region_raw.writeto(os.path.join(region_raw_folder, f'{obs_name}_reg_raw.fits'), overwrite=True)
|
||||
fits.writeto(os.path.join(wav_sum_folder, f'{obs_name}_wav_sum.fits'), wav_sum, overwrite=True)
|
||||
|
||||
print(f'{num:>3} {obs_name} is written.')
|
||||
num += 1
|
||||
DataFrame(table).to_csv(f'{fits_folder}\\test.csv', mode='a', header=False)
|
||||
fits.writeto(f'{region_folder}\\{str(result[0])+result[1]}_region.fits', region, overwrite=True)
|
||||
if region_raw != -1:
|
||||
region_raw.writeto(f'{region_raw_folder}\\{str(result[0])+result[1]}_reg_raw.fits', overwrite=True)
|
||||
print(f'{num:>3} {str(result[0])+result[1]} is written.')
|
||||
num +=1
|
||||
print('Converting generated csv to fits file...')
|
||||
print(f'Current time in: {(perf_counter()-start):.2f}')
|
||||
print(f'Processed {num/len(obs_list)*100:.2f} percent')
|
||||
csv_file = read_csv(os.path.join(fits_folder, 'overview.csv'), index_col=0, dtype={'obs_id': str})
|
||||
Table.from_pandas(csv_file).write(os.path.join(fits_folder, 'overview.fits'), overwrite=True)
|
||||
csv_file = read_csv(f'{fits_folder}\\test.csv', index_col=0, dtype={'obs_id': str})
|
||||
Table.from_pandas(csv_file).write(f'{fits_folder}\\test.fits', overwrite=True)
|
||||
print(f'Finished writing: {perf_counter()-start}')
|
10
setup.py
10
setup.py
@ -4,14 +4,14 @@ with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
setuptools.setup(
|
||||
name="nuwavdet",
|
||||
version="0.1.1",
|
||||
name="nuwavsource",
|
||||
version="0.0.8",
|
||||
author="Andrey Mukhin",
|
||||
author_email="amukhin@cosmos.ru",
|
||||
description="A package for source exclusion in NuSTAR observation data using wavelet decomposition",
|
||||
author_email="amukhin@phystech.edu",
|
||||
description="A package for source exclusion in NuStar observation data using wavelet decomposition",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/andrey-rrousan/nuwavdet",
|
||||
url="https://github.com/Andreyousan/nuwavsource",
|
||||
packages=setuptools.find_packages(),
|
||||
include_package_data=True,
|
||||
classifiers=(
|
||||
|
Loading…
x
Reference in New Issue
Block a user