357 lines
17 KiB
Python
357 lines
17 KiB
Python
# %%
|
|
import numpy as np
|
|
import itertools
|
|
from pandas import DataFrame, read_csv
|
|
from astropy.table import Table
|
|
from astropy.coordinates import SkyCoord
|
|
from astropy import units as u
|
|
from multiprocessing import get_context, cpu_count
|
|
from time import perf_counter
|
|
from os import stat, makedirs
|
|
from os.path import dirname
|
|
from scipy.signal import fftconvolve, convolve2d
|
|
from astropy.io import fits
|
|
from astropy.wcs import WCS
|
|
from glob import glob
|
|
from warnings import filterwarnings
|
|
filterwarnings('ignore')
|
|
|
|
def get_link_list(folder, sort_list=True):
|
|
links = glob(f'{folder}\\**\\*_cl.evt',recursive=True)
|
|
if sort_list:
|
|
sorted_list = sorted(links, key=lambda x: stat(x).st_size)
|
|
return np.array(sorted_list)
|
|
else:
|
|
return np.array(links)
|
|
def binary_array(num):
|
|
variants = [[0,1],]*num
|
|
out = np.zeros((2**num,num),bool)
|
|
for idx, level in enumerate(itertools.product(*variants)):
|
|
out[idx] = np.array(level,dtype=bool)
|
|
return out
|
|
def create_array(filename,mode='Sky'):
|
|
temp = fits.getdata(filename,1)
|
|
if mode == 'Sky':
|
|
return np.histogram2d(temp['Y'],temp['X'],1000,[[0, 1000], [0, 1000]])[0]
|
|
if mode == 'Det':
|
|
return np.histogram2d(temp['DET1Y'],temp['DET1X'],360,[[0, 360], [0, 360]])[0]
|
|
def get_wcs(file):
|
|
header = file[1].header
|
|
wcs = WCS({
|
|
'CTYPE1': header['TCTYP38'], 'CTYPE2': header['TCTYP39'],
|
|
'CUNIT1': header['TCUNI38'], 'CUNIT2': header['TCUNI39'],
|
|
'CDELT1': header['TCDLT38'], 'CDELT2': header['TCDLT39'],
|
|
'CRPIX1': header['TCRPX38'], 'CRPIX2': header['TCRPX39'],
|
|
'CRVAL1': header['TCRVL38'], 'CRVAL2': header['TCRVL39'],
|
|
'NAXIS1': header['TLMAX38'], 'NAXIS2': header['TLMAX39']
|
|
})
|
|
return wcs
|
|
def atrous(level = 0, max_size = 1001):
|
|
base = 1/256*np.array([
|
|
[1, 4, 6, 4, 1],
|
|
[4, 16, 24, 16, 4],
|
|
[6, 24, 36, 24, 6],
|
|
[4, 16, 24, 16, 4],
|
|
[1, 4, 6, 4, 1],
|
|
])
|
|
size = 2**level * (base.shape[0]-1)+1
|
|
output = np.zeros((size,size))
|
|
output[::2**level, ::2**level] = base
|
|
if output.shape[0]>max_size:
|
|
return output[(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1, (size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1]
|
|
return output
|
|
def gauss(level=0, max_size = 1000):
|
|
size = min(5*2**(level+1)+1, max_size)
|
|
sigma = 2**(level)
|
|
A = 1/(2*np.pi*sigma**2)**0.5
|
|
x = A*np.exp( (-(np.arange(size)-(size-1)//2)**2)/(2*sigma**2))
|
|
out = np.multiply.outer(x,x)
|
|
return out
|
|
def adjecent(array):
|
|
grid = np.array([
|
|
[1,1,1],
|
|
[1,0,1],
|
|
[1,1,1]
|
|
])
|
|
output = fftconvolve(array,grid,mode='same') >= 0.5
|
|
try:
|
|
output = np.logical_and(np.logical_and(output, np.logical_not(array)),np.logical_not(array.mask))
|
|
except AttributeError:
|
|
output = np.logical_and(output, np.logical_not(array))
|
|
output = np.argwhere(output == True)
|
|
return output[:,0], output[:,1]
|
|
def add_borders(array,middle=True):
|
|
mask = np.zeros(array.shape)
|
|
datax, datay = np.any(array>0,0), np.any(array>0,1)
|
|
#Add border masks
|
|
x_min, y_min = np.argmax(datax), np.argmax(datay)
|
|
x_max, y_max = len(datax) - np.argmax(datax[::-1]), len(datay) - np.argmax(datay[::-1])
|
|
mask[y_min:y_max,x_min:x_max] = True
|
|
if middle is True:
|
|
mask[176:191,:] = False
|
|
mask[:,176:191] = False
|
|
mask = np.logical_not(mask)
|
|
return mask
|
|
def fill_poisson(array, size_input=32):
|
|
if not(isinstance(array,np.ma.MaskedArray)):
|
|
print('No mask found')
|
|
return array
|
|
size = size_input
|
|
output = array.data.copy()
|
|
mask = array.mask.copy()
|
|
while mask.sum()>1:
|
|
kernel = np.ones((size,size))/size**2
|
|
coeff = fftconvolve(np.logical_not(mask),kernel,mode='same')
|
|
mean = fftconvolve(output,kernel,mode='same')
|
|
idx = np.where(np.logical_and(mask,coeff>0.1))
|
|
output[idx] = np.random.poisson(np.abs(mean[idx]/coeff[idx]))
|
|
mask[idx] = False
|
|
size *= 2
|
|
return output
|
|
|
|
def mirror(array):
|
|
size = array.shape[0]
|
|
output = np.tile(array,(3,3))
|
|
output[0:size] = np.flipud(output[0:size])
|
|
output[2*size:3*size] = np.flipud(output[2*size:3*size])
|
|
output[:,0:size] = np.fliplr(output[:,0:size])
|
|
output[:,2*size:3*size] = np.fliplr(output[:,2*size:3*size])
|
|
return output
|
|
class Observation:
|
|
def __init__(self, file_name, E_borders=[3,20]):
|
|
self.filename = file_name
|
|
self.name = file_name[file_name.find('nu'):].replace('_cl.evt','')
|
|
with fits.open(file_name) as file:
|
|
self.obs_id = file[0].header['OBS_ID']
|
|
self.ra = file[0].header['RA_NOM']
|
|
self.dec = file[0].header['DEC_NOM']
|
|
self.time_start = file[0].header['TSTART']
|
|
self.header = file[0].header
|
|
self.det = self.header['INSTRUME'][-1]
|
|
self.wcs = get_wcs(file)
|
|
self.data = np.ma.masked_array(*self.get_data(file,E_borders))
|
|
self.hard_mask = add_borders(self.data.data,middle=False)
|
|
self.exposure = self.header['EXPOSURE']
|
|
def get_coeff(self):
|
|
coeff = np.array([0.977,0.861,1.163,1.05]) if self.det=='A' else np.array([1.004,0.997,1.025,0.979])
|
|
resized_coeff = (coeff).reshape(2,2).repeat(180,0).repeat(180,1)
|
|
return resized_coeff
|
|
def get_data(self, file, E_borders=[3,20]):
|
|
PI_min, PI_max = (np.array(E_borders)-1.6)/0.04
|
|
data = file[1].data.copy()
|
|
idx_mask = (data['STATUS'].sum(1) == 0)
|
|
idx_output = np.logical_and(idx_mask,np.logical_and((data['PI']>PI_min),(data['PI']<PI_max)))
|
|
data_output = data[idx_output]
|
|
data_mask = data[np.logical_not(idx_mask)]
|
|
build_hist = lambda array: np.histogram2d(array['DET1Y'],array['DET1X'],360,[[0,360],[0,360]])[0]
|
|
output = build_hist(data_output)
|
|
mask = build_hist(data_mask)
|
|
mask = np.logical_or(mask,add_borders(output))
|
|
mask = np.logical_or(mask, self.get_bad_pix(file))
|
|
return output, mask
|
|
def get_bad_pix(self, file):
|
|
output = np.zeros((360,360))
|
|
kernel = np.ones((5,5))
|
|
for i in range(4):
|
|
current_dir = dirname(__file__)
|
|
pixpos_file = fits.getdata(f'{current_dir}\\pixpos\\nu{self.det}pixpos20100101v007.fits',i+1)
|
|
bad_pix_file = file[3+i].data.copy()
|
|
temp = np.zeros(len(pixpos_file),dtype=bool)
|
|
for x,y in zip(bad_pix_file['rawx'],bad_pix_file['rawy']):
|
|
temp = np.logical_or(temp, np.equal(pixpos_file['rawx'],x)*np.equal(pixpos_file['rawy'],y))
|
|
temp = pixpos_file[temp]
|
|
output += np.histogram2d(temp['REF_DET1Y'],temp['REF_DET1X'], 360, [[0,360],[0,360]])[0]
|
|
output = convolve2d(output, kernel, mode='same') > 0
|
|
return output
|
|
def wavdecomp(self, mode = 'gauss', thresh=False,occ_coeff = False):
|
|
#THRESHOLD
|
|
if type(thresh) is int: thresh_max, thresh_add = thresh, thresh/2
|
|
elif type(thresh) is tuple: thresh_max, thresh_add = thresh
|
|
#INIT NEEDED VARIABLES
|
|
wavelet = globals()[mode]
|
|
max_level = 8
|
|
conv_out = np.zeros((max_level+1,self.data.shape[0],self.data.shape[1]))
|
|
size = self.data.shape[0]
|
|
#PREPARE ORIGINAL DATA FOR ANALYSIS: FILL THE HOLES + MIRROR + DETECTOR CORRECTION
|
|
data = fill_poisson(self.data)
|
|
if occ_coeff: data = data*self.get_coeff()
|
|
data = mirror(data)
|
|
data_bkg = data.copy()
|
|
#ITERATIVELY CONDUCT WAVLET DECOMPOSITION
|
|
for i in range(max_level):
|
|
conv = fftconvolve(data,wavelet(i),mode='same')
|
|
temp_out = data-conv
|
|
#ERRORMAP CALCULATION
|
|
if thresh_max != 0:
|
|
sig = ((wavelet(i)**2).sum())**0.5
|
|
bkg = fftconvolve(data_bkg, wavelet(i),mode='same')
|
|
bkg[bkg<0] = 0
|
|
# err = (1+np.sqrt(bkg/sig**2 + 0.75))*sig**3
|
|
err = (1+np.sqrt(bkg+0.75))*sig
|
|
# significant = (np.abs(temp_out)> thresh_max*err)[size:2*size,size:2*size]
|
|
significant = (temp_out > thresh_max*err)[size:2*size,size:2*size]
|
|
if thresh_add != 0:
|
|
# add_significant = (np.abs(temp_out)> thresh_add*err)[size:2*size,size:2*size]
|
|
add_significant = (temp_out > thresh_add*err)[size:2*size,size:2*size]
|
|
adj = adjecent(significant)
|
|
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
|
while (add_condition).any():
|
|
to_add = adj[0][add_condition], adj[1][add_condition]
|
|
significant[to_add[0],to_add[1]] = True
|
|
adj = adjecent(significant)
|
|
add_condition = np.logical_and(add_significant[adj[0],adj[1]],np.logical_not(significant[adj[0],adj[1]]))
|
|
# add_condition = np.logical_and(np.abs(temp_out)[adj[0],adj[1]] >= thresh_add*err[adj[0],adj[1]], np.logical_not(significant)[adj[0],adj[1]])
|
|
temp_out[size:2*size,size:2*size][np.logical_not(significant)] = 0
|
|
#WRITING THE WAVELET DECOMP LAYER
|
|
conv_out[i] = +temp_out[size:2*size,size:2*size]
|
|
conv_out[i][conv_out[i]<0]=0 #leave only positive data to prevent problems while summing layers
|
|
data = conv
|
|
conv_out[max_level] = conv[size:2*size,size:2*size]
|
|
return conv_out
|
|
def process(obs_path):
|
|
bin_num = 6
|
|
try:
|
|
obs = Observation(obs_path)
|
|
sky_coord = SkyCoord(ra=obs.ra*u.deg,dec=obs.dec*u.deg,frame='fk5').transform_to('galactic')
|
|
lon, lat = sky_coord.l.value, sky_coord.b.value
|
|
rem_signal, rem_area, poiss_comp, rms = np.zeros((4,2**bin_num))
|
|
region = np.zeros(obs.data.shape, dtype=bool)
|
|
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
|
masked_obs = np.ma.masked_array(obs.data, mask = region)
|
|
good_lvl = np.zeros(bin_num,dtype=bool)
|
|
good_idx = 0
|
|
if obs.exposure > 1000:
|
|
wav_obs = obs.wavdecomp('gauss',(5,3),occ_coeff=True)
|
|
occ_coeff = obs.get_coeff()
|
|
for idx, lvl in enumerate(binary_array(bin_num)):
|
|
try:
|
|
region = wav_obs[2:-1][lvl].sum(0)>0
|
|
except ValueError:
|
|
region = np.zeros(obs.data.shape,dtype=bool)
|
|
masked_obs = np.ma.masked_array(obs.data, mask = region)*occ_coeff
|
|
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
|
rem_signal[idx] = 1-obs.data[region].sum()/obs.data.sum()
|
|
rem_area[idx] = 1 - rem_region.sum()/np.logical_not(obs.data.mask).sum()
|
|
poiss_comp[idx] = np.mean((masked_obs-masked_obs.mean())**2/masked_obs.mean())
|
|
rms[idx] = np.sqrt(((masked_obs-masked_obs.mean())**2).mean())
|
|
parameter = lambda idx: ((poiss_comp[idx])**2+((1-rem_area[idx])*0.5)**2)
|
|
if (parameter(idx)<parameter(good_idx)):
|
|
good_idx = idx
|
|
good_lvl = lvl
|
|
try:
|
|
region = wav_obs[2:-1][good_lvl].sum(0)>0
|
|
except ValueError:
|
|
region = np.zeros(obs.data.shape,dtype=bool)
|
|
masked_obs = np.ma.masked_array(obs.data, mask = region)
|
|
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
|
|
to_table = [obs.obs_id,
|
|
obs.det,
|
|
obs.ra,
|
|
obs.dec,
|
|
lon,
|
|
lat,
|
|
obs.time_start,
|
|
obs.exposure,
|
|
masked_obs.mean()/obs.exposure, #count rate
|
|
1 - rem_region.sum()/np.logical_not(obs.data.mask).sum(), #rem_area
|
|
poiss_comp[good_idx],
|
|
poiss_comp[0],
|
|
rms[good_idx]
|
|
]
|
|
else:
|
|
to_table = [obs.obs_id,
|
|
obs.det,
|
|
obs.ra,
|
|
obs.dec,
|
|
lon,
|
|
lat,
|
|
obs.time_start,
|
|
obs.exposure,
|
|
-1,
|
|
-1, #rem_signal
|
|
-1, #rem_area
|
|
-1,
|
|
-1,
|
|
-1
|
|
]
|
|
return to_table, region.astype(int)
|
|
except TypeError:
|
|
return obs_path, np.zeros((360,360))
|
|
def process_folder(input_folder = None, continue_old = None, fits_folder = None):
|
|
#DIALOGUE
|
|
if not(input_folder):
|
|
print('Enter path to the input folder')
|
|
input_folder = input()
|
|
if not(continue_old):
|
|
print('Create new file for this processing? y/n')
|
|
continue_old = input()
|
|
if continue_old == 'y':
|
|
start_new = True
|
|
elif continue_old == 'n':
|
|
start_new = False
|
|
else:
|
|
print('Cannot interprete input, closing script')
|
|
raise SystemExit(0)
|
|
if not(fits_folder):
|
|
print(f'Enter path to the output folder')
|
|
fits_folder = input()
|
|
region_folder = f'{fits_folder}\\Region'
|
|
#CREATE ALL NECESSARY FILES AND VARIBALES
|
|
obs_list = get_link_list(input_folder,sort_list = True)
|
|
start = perf_counter()
|
|
group_size = 50
|
|
makedirs(region_folder,exist_ok = True)
|
|
#FILTERING BY THE FILE SIZE
|
|
print(f'Finished scanning folders. Found {len(obs_list)} observations.')
|
|
table = {
|
|
'obs_id':[], 'detector':[], 'ra':[], 'dec':[], 'lon':[], 'lat':[], 't_start':[], 'exposure':[],
|
|
'count_rate':[], 'remaining_area':[], 'poisson_chi2':[], 'poisson_chi2_full':[], 'rms':[]
|
|
}
|
|
if start_new:
|
|
out_table = DataFrame(table)
|
|
out_table.to_csv(f'{fits_folder}\\test.csv')
|
|
out_table.to_csv(f'{fits_folder}\\test_skipped.csv')
|
|
#FILTERING OUT PROCESSED OBSERVATIONS
|
|
already_processed_list = read_csv(f'{fits_folder}\\test.csv',index_col=0,dtype={'obs_id':str})
|
|
already_skipped_list = read_csv(f'{fits_folder}\\test_skipped.csv',index_col=0,dtype={'obs_id':str})
|
|
already_processed = (already_processed_list['obs_id'].astype(str)+already_processed_list['detector']).values
|
|
already_skipped = (already_skipped_list['obs_id'].astype(str)+already_skipped_list['detector']).values
|
|
obs_list_names = [curr[curr.index('nu')+2:curr.index('_cl.evt')-2] for curr in obs_list]
|
|
not_processed = np.array([(curr not in already_processed) for curr in obs_list_names])
|
|
not_skipped = np.array([(curr not in already_skipped) for curr in obs_list_names])
|
|
obs_list = obs_list[np.logical_and(not_processed,not_skipped)]
|
|
print(f'Removed already processed observations. {len(obs_list)} observations remain.')
|
|
#START PROCESSING
|
|
print('Started processing...')
|
|
num = 0
|
|
for group_idx in range(len(obs_list)//group_size+1):
|
|
print(f'Started group {group_idx}')
|
|
group_list = obs_list[group_size*group_idx:min(group_size*(group_idx+1),len(obs_list))]
|
|
max_size = np.array([stat(file).st_size/2**20 for file in group_list]).max()
|
|
process_num = cpu_count() if max_size<50 else (cpu_count()//2 if max_size<200 else (cpu_count()//4 if max_size<1000 else 1))
|
|
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
|
|
with get_context('spawn').Pool(processes=process_num) as pool:
|
|
for result,region in pool.imap(process,group_list):
|
|
if type(result) is np.str_:
|
|
obs_id = result[result.index('nu'):result.index('_cl.evt')]
|
|
print(f'{num:>3} is skipped. File {obs_id}')
|
|
num +=1
|
|
continue
|
|
for key,value in zip(table.keys(),result):
|
|
table[key] = [value]
|
|
if table['exposure'][0] < 1000:
|
|
print(f'{num:>3} {str(result[0])+result[1]} is skipped. Exposure < 1000')
|
|
DataFrame(table).to_csv(f'{fits_folder}\\test_skipped.csv',mode='a',header=False)
|
|
num +=1
|
|
continue
|
|
DataFrame(table).to_csv(f'{fits_folder}\\test.csv',mode='a',header=False)
|
|
fits.writeto(f'{region_folder}\\{str(result[0])+result[1]}_region.fits', region, overwrite= True)
|
|
print(f'{num:>3} {str(result[0])+result[1]} is written.')
|
|
num +=1
|
|
print('Converting generated csv to fits file...')
|
|
print(f'Current time in: {(perf_counter()-start):.2f}')
|
|
print(f'Processed {num/len(obs_list)*100:.2f} percent')
|
|
csv_file = read_csv(f'{fits_folder}\\test.csv',index_col=0,dtype={'obs_id':str})
|
|
Table.from_pandas(csv_file).write(f'{fits_folder}\\test.fits',overwrite=True)
|
|
print(f'Finished writing: {perf_counter()-start}')
|