nuwavdet/nuwavsource/nuwavsource.py
2022-10-21 13:11:19 +03:00

538 lines
21 KiB
Python

# %%
import numpy as np
import itertools
from pandas import DataFrame, read_csv
from astropy.table import Table, unique
from astropy.coordinates import SkyCoord
from astropy import units as u
from multiprocessing import get_context, cpu_count
from time import perf_counter
from os import stat, makedirs
from os.path import dirname
from scipy.signal import fftconvolve, convolve2d
from astropy.io import fits
from astropy.wcs import WCS
from glob import glob
from warnings import filterwarnings
filterwarnings('ignore')
def get_link_list(folder: str, sort_list: bool = True) -> list[str]:
"""
Returns array of paths to all *_cl.evt files in the directory recursively.
"""
links = glob(f'{folder}\\**\\*_cl.evt', recursive=True)
if sort_list:
sorted_list = sorted(links, key=lambda x: stat(x).st_size)
return np.array(sorted_list)
else:
return np.array(links)
def binary_array(num: int) -> list[list[bool]]:
"""
Returns list of all possible combinations of num of bool values.
"""
variants = [[0, 1], ]*num
out = np.zeros((2**num, num), bool)
for idx, level in enumerate(itertools.product(*variants)):
out[idx] = np.array(level, dtype=bool)
return out
def create_array(file_path: str, mode: str = 'Sky') -> list[int]:
"""
Returns a 2d array of counts for given observation file.
Modes 'Sky' and 'Det' return arrays in (X,Y) and DET1 respectively.
"""
temp = fits.getdata(file_path, 1)
if mode == 'Sky':
return np.histogram2d(temp['Y'],
temp['X'],
1000,
[[0, 1000], [0, 1000]])[0]
if mode == 'Det':
return np.histogram2d(temp['DET1Y'],
temp['DET1X'],
360,
[[0, 360], [0, 360]])[0]
def get_wcs(file):
"""
Returns WCS for given observation.
Note that argument here is an opened fits file, not a path.
"""
header = file[1].header
wcs = WCS({
'CTYPE1': header['TCTYP38'], 'CTYPE2': header['TCTYP39'],
'CUNIT1': header['TCUNI38'], 'CUNIT2': header['TCUNI39'],
'CDELT1': header['TCDLT38'], 'CDELT2': header['TCDLT39'],
'CRPIX1': header['TCRPX38'], 'CRPIX2': header['TCRPX39'],
'CRVAL1': header['TCRVL38'], 'CRVAL2': header['TCRVL39'],
'NAXIS1': header['TLMAX38'], 'NAXIS2': header['TLMAX39']
})
return wcs
def atrous(level: int = 0, max_size: int = 1001) -> list[list[float]]:
"""
Returns a trou kernel with the size 2**level and corresponding shape.
"""
base = 1/256*np.array([
[1, 4, 6, 4, 1],
[4, 16, 24, 16, 4],
[6, 24, 36, 24, 6],
[4, 16, 24, 16, 4],
[1, 4, 6, 4, 1],
])
size = 2**level * (base.shape[0]-1)+1
output = np.zeros((size, size))
output[::2**level, ::2**level] = base
if output.shape[0] > max_size:
return output[(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1,
(size-1)//2-(max_size-1)//2:(size-1)//2+(max_size-1)//2+1]
return output
def atrous_sig(level: int = 0) -> float:
sig_values = [0.8908, 0.20066, 0.08551, 0.04122, 0.02042]
if level < 5:
return sig_values[level]
else:
return sig_values[4]/2**(level-4)
def gauss(level: int = 0, max_size: int = 1000) -> list[list[float]]:
"""
Returns gaussian kernel with sigma = 2**level
"""
size = min(5*2**(level+1)+1, max_size)
sigma = 2**(level)
A = 1/(2*np.pi*sigma**2)**0.5
x = A*np.exp((-(np.arange(size)-(size-1)//2)**2)/(2*sigma**2))
out = np.multiply.outer(x, x)
return out
def adjecent(array):
"""
Returns two lists of indices of cells adjecent or diagonal to non-zero cells of given array
"""
grid = np.array([
[1, 1, 1],
[1, 0, 1],
[1, 1, 1]
])
output = fftconvolve(array, grid, mode='same') >= 0.5
try:
output = np.logical_and(np.logical_and(output, np.logical_not(array)),
np.logical_not(array.mask))
except AttributeError:
output = np.logical_and(output, np.logical_not(array))
return output
def add_borders(array, middle=True):
"""
Returns border mask for an DET1 observation array
"""
mask = np.zeros(array.shape)
datax, datay = np.any(array > 0, 0), np.any(array > 0, 1)
# Add border masks
x_min, y_min = np.argmax(datax), np.argmax(datay)
x_max = len(datax) - np.argmax(datax[::-1])
y_max = len(datay) - np.argmax(datay[::-1])
mask[y_min:y_max, x_min:x_max] = True
if middle is True:
mask[176:191, :] = False
mask[:, 176:191] = False
mask = np.logical_not(mask)
return mask
def fill_poisson(array, size_input=32):
"""
Fills all masked elements of an array with poisson signal with local expected value.
"""
if not (isinstance(array, np.ma.MaskedArray)):
print('No mask found')
return array
size = size_input
output = array.data.copy()
mask = array.mask.copy()
while mask.sum() > 1:
kernel = np.ones((size, size))/size**2
coeff = fftconvolve(np.logical_not(mask), kernel, mode='same')
mean = fftconvolve(output, kernel, mode='same')
idx = np.where(np.logical_and(mask, coeff > 0.1))
output[idx] = np.random.poisson(np.abs(mean[idx]/coeff[idx]))
mask[idx] = False
size *= 2
return output
def mirror(array):
"""
Returns 3 times bigger array with mirrored elements.
Original array is located in center.
"""
size = array.shape[0]
output = np.tile(array, (3, 3))
output[0:size] = np.flipud(output[0:size])
output[2*size:3*size] = np.flipud(output[2*size:3*size])
output[:, 0:size] = np.fliplr(output[:, 0:size])
output[:, 2*size:3*size] = np.fliplr(output[:, 2*size:3*size])
return output
class Observation:
"""
Main class, contains information about the observation given.
"""
def __init__(self, file_name, E_borders=[3, 20]):
self.filename = file_name
self.name = file_name[file_name.find('nu'):].replace('_cl.evt','')
with fits.open(file_name) as file:
self.obs_id = file[0].header['OBS_ID']
self.ra = file[0].header['RA_NOM']
self.dec = file[0].header['DEC_NOM']
self.time_start = file[0].header['TSTART']
self.header = file[0].header
self.det = self.header['INSTRUME'][-1]
self.wcs = get_wcs(file)
self.data = np.ma.masked_array(*self.get_data(file, E_borders))
self.hard_mask = add_borders(self.data.data, middle=False)
self.exposure = self.header['EXPOSURE']
def get_coeff(self):
"""
Returns normalalizing coefficients for different chips of the observation detector.
Coefficients are obtained from stacked observations in OCC mode.
"""
coeff = np.array([0.977, 0.861, 1.163, 1.05]) if self.det == 'A' else np.array([1.004, 0.997, 1.025, 0.979])
resized_coeff = (coeff).reshape(2, 2).repeat(180, 0).repeat(180, 1)
return resized_coeff
def get_data(self, file, E_borders=[3, 20]):
"""
Returns masked array with DET1 image data for given energy band.
Mask is created from observations badpix tables and to mask the border and gaps.
"""
PI_min, PI_max = (np.array(E_borders)-1.6)/0.04
data = file[1].data.copy()
idx_mask = (data['STATUS'].sum(1) == 0)
idx_output = np.logical_and(idx_mask, np.logical_and((data['PI'] > PI_min), (data['PI'] < PI_max)))
data_output = data[idx_output]
data_mask = data[np.logical_not(idx_mask)]
build_hist = lambda array: np.histogram2d(array['DET1Y'], array['DET1X'], 360, [[0, 360], [0, 360]])[0]
output = build_hist(data_output)
mask = build_hist(data_mask)
mask = np.logical_or(mask, add_borders(output))
mask = np.logical_or(mask, self.get_bad_pix(file))
return output, mask
def get_bad_pix(self, file):
"""
Creates a mask for observation based on badpix tables.
"""
output = np.zeros((360, 360))
kernel = np.ones((5, 5))
for i in range(4):
current_dir = dirname(__file__)
pixpos_file = fits.getdata(f'{current_dir}\\pixpos\\nu{self.det}pixpos20100101v007.fits',i+1)
bad_pix_file = file[3+i].data.copy()
temp = np.zeros(len(pixpos_file), dtype=bool)
for x, y in zip(bad_pix_file['rawx'], bad_pix_file['rawy']):
temp = np.logical_or(temp, np.equal(pixpos_file['rawx'], x)*np.equal(pixpos_file['rawy'], y))
temp = pixpos_file[temp]
output += np.histogram2d(temp['REF_DET1Y'], temp['REF_DET1X'], 360, [[0, 360],[0, 360]])[0]
output = convolve2d(output, kernel, mode='same') > 0
return output
def wavdecomp(self, mode='gauss', thresh=False, occ_coeff=False):
"""
Performs a wavelet decomposition of image.
"""
# THRESHOLD
if type(thresh) is int:
thresh_max, thresh_add = thresh, thresh/2
elif type(thresh) is tuple:
thresh_max, thresh_add = thresh
# INIT NEEDED VARIABLES
wavelet = globals()[mode]
max_level = 8
conv_out = np.zeros(
(max_level+1, self.data.shape[0], self.data.shape[1])
)
size = self.data.shape[0]
# PREPARE ORIGINAL DATA FOR ANALYSIS: FILL THE HOLES + MIRROR + DETECTOR CORRECTION
data = fill_poisson(self.data)
if occ_coeff:
data = data*self.get_coeff()
data = mirror(data)
# ITERATIVELY CONDUCT WAVLET DECOMPOSITION
for i in range(max_level):
conv = fftconvolve(data, wavelet(i), mode='same')
conv[conv < 0] = 0
temp_out = data-conv
# ERRORMAP CALCULATION
if thresh_max != 0:
if mode == 'gauss':
sig = ((wavelet(i)**2).sum())**0.5
if mode == 'atrous':
sig = atrous_sig(i)
bkg = fftconvolve(data, wavelet(i), mode='same')
bkg[bkg < 0] = 0
err = (1+np.sqrt(bkg+0.75))*sig
significant = (np.abs(temp_out) > thresh_max*err)[size:2*size, size:2*size]
if thresh_add != 0:
add_significant = (np.abs(temp_out) > thresh_add*err)[size:2*size, size:2*size]
adj = adjecent(significant)
add_condition = np.logical_and(adj, add_significant)
while (add_condition).any():
significant = np.logical_or(significant, add_condition)
adj = adjecent(significant)
add_condition = np.logical_and(adj, add_significant)
significant = mirror(significant)
temp_out[np.logical_not(significant)] = 0
# WRITING THE WAVELET DECOMP LAYER
conv_out[i] = +temp_out[size:2*size, size:2*size]
data = conv
conv_out[max_level] = conv[size:2*size, size:2*size]
return conv_out
def region_to_raw(self, region):
"""
Returns a hdu_list with positions of masked pixels in RAW coordinates.
"""
x_region, y_region = np.where(region)
tables = []
for i in range(4):
current_dir = dirname(__file__)
pixpos = Table(fits.getdata(f'{current_dir}\\pixpos\\nu{self.det}pixpos20100101v007.fits', i+1))
pixpos = pixpos[pixpos['REF_DET1X'] != -1]
test = np.zeros(len(pixpos['REF_DET1X']), dtype=bool)
for idx, (x, y) in enumerate(zip(pixpos['REF_DET1X'], pixpos['REF_DET1Y'])):
test[idx] = np.logical_and(np.equal(x, x_region), np.equal(y, y_region)).any()
table = Table({'RAWX': pixpos['RAWX'][test], 'RAWY': pixpos['RAWY'][test]})
if not table:
tables.append(table)
else:
tables.append(unique(table))
hdu_list = fits.HDUList([
fits.PrimaryHDU(),
fits.table_to_hdu(tables[0]),
fits.table_to_hdu(tables[1]),
fits.table_to_hdu(tables[2]),
fits.table_to_hdu(tables[3]),
])
return hdu_list
def process(args):
"""
Creates a mask using wavelet decomposition and produces some statistical and metadata about the passed observation.
args must contain two arguments: path to the file of interest and threshold, e.g. ('D:\Data\obs_cl.evt',(5,2))
"""
obs_path, thresh = args
bin_num = 6
try:
obs = Observation(obs_path)
sky_coord = SkyCoord(ra=obs.ra*u.deg, dec=obs.dec*u.deg, frame='fk5').transform_to('galactic')
lon, lat = sky_coord.l.value, sky_coord.b.value
rem_signal, rem_area, poiss_comp, rms = np.zeros((4, 2**bin_num))
region = np.zeros(obs.data.shape, dtype=bool)
region_raw = -1
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
masked_obs = np.ma.masked_array(obs.data, mask=region)
good_lvl = np.zeros(bin_num, dtype=bool)
good_idx = 0
if obs.exposure > 1000:
wav_obs = obs.wavdecomp('atrous', thresh, occ_coeff=True)
wav_obs[wav_obs < 0] = 0
occ_coeff = obs.get_coeff()
for idx, lvl in enumerate(binary_array(bin_num)):
try:
region = wav_obs[2:-1][lvl].sum(0) > 0
# region = fftconvolve(wav_obs[2:-1][lvl].sum(0)>0, gauss(3),mode='same') > 0.5
except ValueError:
region = np.zeros(obs.data.shape, dtype=bool)
masked_obs = np.ma.masked_array(obs.data, mask=region)*occ_coeff
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
rem_signal[idx] = 1-obs.data[region].sum()/obs.data.sum()
rem_area[idx] = 1 - rem_region.sum()/np.logical_not(obs.data.mask).sum()
poiss_comp[idx] = np.mean((masked_obs-masked_obs.mean())**2/masked_obs.mean())
rms[idx] = np.sqrt(((masked_obs-masked_obs.mean())**2).mean())
parameter = lambda idx: ((poiss_comp[idx])**2+((1-rem_area[idx])*0.5)**2)
if (parameter(idx) < parameter(good_idx)):
good_idx = idx
good_lvl = lvl
try:
region = wav_obs[2:-1][good_lvl].sum(0) > 0
# region = fftconvolve(wav_obs[2:-1][good_lvl].sum(0)>0, gauss(2),mode='same')>0.2
if region.sum() > 0:
region_raw = obs.region_to_raw(region.astype(int))
except ValueError:
region = np.zeros(obs.data.shape, dtype=bool)
masked_obs = np.ma.masked_array(obs.data, mask=region)
rem_region = np.logical_and(region, np.logical_not(obs.data.mask))
to_table = [obs.obs_id,
obs.det,
obs.ra,
obs.dec,
lon,
lat,
obs.time_start,
obs.exposure,
masked_obs.mean()/obs.exposure, # count rate
1 - rem_region.sum()/np.logical_not(obs.data.mask).sum(), # rem_area
poiss_comp[good_idx],
poiss_comp[0],
rms[good_idx]
]
else:
to_table = [obs.obs_id,
obs.det,
obs.ra,
obs.dec,
lon,
lat,
obs.time_start,
obs.exposure,
-1,
-1, # rem_signal
-1, # rem_area
-1,
-1,
-1
]
return to_table, region.astype(int), region_raw
except TypeError:
return obs_path, -1, -1
def process_folder(input_folder=None, start_new_file=None, fits_folder=None, thresh=None):
"""
Generates a fits-table of parameters, folder with mask images in DET1 and BADPIX tables in RAW for all observations in given folder.
Note that observations with exposure < 1000 sec a skipped.
start_new_file can be either 'y' or 'n'.
thresh must be a tuple, e.g. (5,2).
"""
# DIALOGUE
if not (input_folder):
print('Enter path to the input folder')
input_folder = input()
if not (start_new_file):
print('Create new file for this processing? y/n')
start_new_file = input()
if start_new_file == 'y':
start_new = True
elif start_new_file == 'n':
start_new = False
else:
print('Cannot interprete input, closing script')
raise SystemExit(0)
if not (fits_folder):
print(f'Enter path to the output folder')
fits_folder = input()
region_folder = f'{fits_folder}\\Region'
region_raw_folder = f'{fits_folder}\\Region_raw'
if not thresh:
print('Enter threshold values for wavelet decomposition:')
print('General threshold:')
_thresh_max = float(input())
print('Additional threshold:')
_thresh_add = float(input())
thresh = (_thresh_max, _thresh_add)
# CREATE ALL NECESSARY FILES AND VARIBALES
obs_list = get_link_list(input_folder, sort_list=True)
start = perf_counter()
group_size = 50
makedirs(region_folder, exist_ok=True)
makedirs(region_raw_folder, exist_ok=True)
# FILTERING BY THE FILE SIZE
print(f'Finished scanning folders. Found {len(obs_list)} observations.')
table = {
'obs_id': [], 'detector': [], 'ra': [], 'dec': [],
'lon': [], 'lat': [], 't_start': [], 'exposure': [],
'count_rate': [], 'remaining_area': [], 'poisson_chi2': [],
'poisson_chi2_full': [], 'rms': []
}
if start_new:
out_table = DataFrame(table)
out_table.to_csv(f'{fits_folder}\\test.csv')
out_table.to_csv(f'{fits_folder}\\test_skipped.csv')
# FILTERING OUT PROCESSED OBSERVATIONS
already_processed_list = read_csv(
f'{fits_folder}\\test.csv',
index_col=0,
dtype={'obs_id': str}
)
already_skipped_list = read_csv(
f'{fits_folder}\\test_skipped.csv',
index_col=0,
dtype={'obs_id': str}
)
already_processed = (
already_processed_list['obs_id'].astype(str) +
already_processed_list['detector']
).values
already_skipped = (
already_skipped_list['obs_id'].astype(str) +
already_skipped_list['detector']
).values
obs_list_names = [
curr[curr.index('nu')+2:curr.index('_cl.evt')-2]
for curr in obs_list
]
not_processed = np.array([
(curr not in already_processed)
for curr in obs_list_names
])
not_skipped = np.array([
(curr not in already_skipped)
for curr in obs_list_names
])
obs_list = obs_list[np.logical_and(not_processed, not_skipped)]
print(f'Removed already processed observations. {len(obs_list)} observations remain.')
# START PROCESSING
print('Started processing...')
num = 0
for group_idx in range(len(obs_list)//group_size+1):
print(f'Started group {group_idx}')
group_list = obs_list[group_size*group_idx:min(group_size*(group_idx+1), len(obs_list))]
max_size = np.array([
stat(file).st_size/2**20
for file in group_list
]).max()
process_num = (cpu_count() if max_size < 50 else (cpu_count()//2 if max_size < 200 else (cpu_count()//4 if max_size < 1000 else 1)))
print(f"Max file size in group is {max_size:.2f}Mb, create {process_num} processes")
with get_context('spawn').Pool(processes=process_num) as pool:
packed_args = map(lambda _: (_, thresh), group_list)
for result, region, region_raw in pool.imap(process, packed_args):
if type(result) is np.str_:
obs_id = result[result.index('nu'):result.index('_cl.evt')]
print(f'{num:>3} is skipped. File {obs_id}')
num += 1
continue
for key, value in zip(table.keys(), result):
table[key] = [value]
if table['exposure'][0] < 1000:
print(f'{num:>3} {str(result[0])+result[1]} is skipped. Exposure < 1000')
DataFrame(table).to_csv(f'{fits_folder}\\test_skipped.csv', mode='a', header=False)
num +=1
continue
DataFrame(table).to_csv(f'{fits_folder}\\test.csv', mode='a', header=False)
fits.writeto(f'{region_folder}\\{str(result[0])+result[1]}_region.fits', region, overwrite=True)
if region_raw != -1:
region_raw.writeto(f'{region_raw_folder}\\{str(result[0])+result[1]}_reg_raw.fits', overwrite=True)
print(f'{num:>3} {str(result[0])+result[1]} is written.')
num +=1
print('Converting generated csv to fits file...')
print(f'Current time in: {(perf_counter()-start):.2f}')
print(f'Processed {num/len(obs_list)*100:.2f} percent')
csv_file = read_csv(f'{fits_folder}\\test.csv', index_col=0, dtype={'obs_id': str})
Table.from_pandas(csv_file).write(f'{fits_folder}\\test.fits', overwrite=True)
print(f'Finished writing: {perf_counter()-start}')