1. add README for windows. 2. rewrite some python scripts and bat-files according to windows requirements. 3. Create tm_brd_parser.py and tm_wheel_parser.py for demonstration how to work with data in python

This commit is contained in:
Danila 2025-06-09 20:05:35 +03:00
parent b2380a2d6e
commit ab2a3e8b53
13 changed files with 278 additions and 196 deletions

2
.gitignore vendored
View File

@ -6,8 +6,8 @@
*.log *.log
*.txt *.txt
*.xls *.xls
*.xlsx
*.csv# *.csv#
*.exe
*.doc *.doc
*.docx *.docx
/bin/__pycache__ /bin/__pycache__

View File

@ -6,24 +6,26 @@ This project contains tools for decoding, converting, and visualizing telemetry
- **Project structure** - **Project structure**
- **Requirements** - **Requirements**
- ** Linux Setup** - **Linux Setup**
- ** Windows 10 Setup** - **Windows 10 Setup**
- **Using the tools** - **Using the tools**
- *Plot all ASOTR data* - *Plot all ASOTR data*
- *Plot ASOTR data in specified date borders (for MVN reports)* - *Plot ASOTR data in specified date borders (for MVN reports)*
- **Contacts** - **Contacts**
**Note 1**: \<PATH_TO_MVN_FLIGHT\> - path where is mvn_flight scripts is cloned from heagit **Note 1**: \<PATH_TO_MVN_FLIGHT\> - path where is mvn_flight scripts is cloned from heagit
**Note 2**: \<PATH_TO_ASOTR_DATA\> - path with raw MVN ASOTR data **Note 2**: \<PATH_TO_ASOTR_DATA\> - path with raw MVN ASOTR data
**Note 3**: \<PATH_TO_MVN_DATA\> - path with raw MVN data
## Project structure ## Project structure
-> `/bin/` - ready-to-use binary files and python scripts for assembling, extracting and plotting telemetry data -> `/bin/` - ready-to-use binary files and python scripts for assembling, extracting and plotting telemetry data
--> `/bin/asotr_unzip_plot.sh` or `/bin/asotr_unzip_plot.bat` — scripts to automate the unpack-convert-plot chain for Linux/Windows. --> `/bin/asotr_unzip_plot.sh` or `/bin/asotr_unzip_plot.bat` — scripts to automate the unpack-convert-plot chain ASOTR data (Linux/Windows).
--> `/bin/plot_flight_borders.py` — Python script to generate plots from CSV data. --> `/bin/plot_flight_borders.py` — Python script to generate plots from CSV data.
-> `/asotr_csv/` — binary parser to collect data from raw ASOTR data to CSV. This parser written using the Rust language. For more informatin see documentation in `/asotr_csv/README.markdown`). --> `/bin/plot_flight_borders.sh` or `/bin/plot_flight_borders.bat` - scripts to automate plot generations for MVN reports
-> `/data/` — folder containing processed CSV files. --> `/bin/tm_brd_parser.py` - python script for demostration processing BRD telemetry data (1 Hz evolution)
-> `/plots/` — folder where output plots are saved. --> `/bin/tm_wheel_parser.py` - python script for demostration processing BRD wheel telemetry data
-> `/asotr_csv/` — binary parser to collect data from raw ASOTR data to CSV. This parser written using the Rust language. For more informatin see documentation in `/asotr_csv/README.markdown`).
-> `/data/` — folder containing processed CSV files.
-> `/plots/` — folder where output plots are saved.
## Requirements ## Requirements
- Python version 3.10 or upper. For checking type: - Python version 3.10 or upper. For checking type:
@ -31,21 +33,11 @@ This project contains tools for decoding, converting, and visualizing telemetry
python3 --version python3 --version
``` ```
Python dependencies:
```bash
pip install matplotlib pandas
```
- Rust compiler version 1.83.0 or upper. For checking type: - Rust compiler version 1.83.0 or upper. For checking type:
```bash ```bash
rustc --version rustc --version
``` ```
Additional tools (Linux only):
```bash
sudo apt install unzip git
```
## Linux Setup ## Linux Setup
1. Clone the repo to your computer: 1. Clone the repo to your computer:
```bash ```bash
@ -56,7 +48,7 @@ git clone http://heagit.cosmos.ru/gamkov/mvn_flight.git
```bash ```bash
sudo apt update sudo apt update
sudo apt install python3 python3-pip sudo apt install python3 python3-pip
pip3 install matplotlib pandas pip3 install matplotlib pandas openpyxl scipy
``` ```
1. Install Rust compiler (if you do not have): 1. Install Rust compiler (if you do not have):
@ -74,7 +66,7 @@ git clone http://heagit.cosmos.ru/gamkov/mvn_flight.git
3. Open CMD and install python dependencies: 3. Open CMD and install python dependencies:
```cmd ```cmd
pip install matplotlib pandas pip install matplotlib pandas openpyxl scipy
``` ```
4. Install Rust compiler (if you do not have): 4. Install Rust compiler (if you do not have):
@ -87,23 +79,41 @@ For more detailed information you can go to: https://doc.rust-lang.ru/book/ch01-
### Plot all ASOTR data ### Plot all ASOTR data
1. Donwload data from science data server to directory \<PATH_TO_ASOTR_DATA\>. 1. Donwload data from science data server to directory \<PATH_TO_ASOTR_DATA\>.
If you don't have MVN data, you might download it from server with science SRG data (IP: 193.232.11.95). If you don't have MVN data, you might download it from server with science SRG data (IP: 193.232.11.95).
For questions about downloading science data contact Shtykovsky A. (a.shtykovsky@cosmos.ru) or Chelovekov I. (chelovekov@cosmos.ru) For questions about downloading science data contact Shtykovsky A. (a.shtykovsky@cosmos.ru) or Chelovekov I. (chelovekov@cosmos.ru)
Linux (for example):
```
sftp username@IP_address
cd mvn/data/data/2025
get -r 20250101*
```
Windows:
```
Open filezilla
connect to sft server
get data from: /export/home/user_name/mvn/data/data/2025
```
2. Parse all raw data from ASOTR into csv files and plot all csv data: 2. Parse all raw data from ASOTR into csv files and plot all csv data:
Linux: Linux:
```bash ```bash
./bin/asotr_unzip_plot.sh <PATH_TO_ASOTR_DATA>/ cd bin
./asotr_unzip_plot.sh <PATH_TO_ASOTR_DATA>/
``` ```
Windows: Windows:
```cmd ```cmd
.\bin\asotr_unzip_plot.bat <PATH_TO_ASOTR_DATA>\ cd bin
asotr_unzip_plot.bat <PATH_TO_ASOTR_DATA>\
``` ```
csv data will be in directory: csv data will be in directory:
```cmd ```cmd
./data/asotr/ /data/asotr/
``` ```
### Plot ASOTR data in specified date borders (for MVN reports) ### Plot ASOTR data in specified date borders (for MVN reports)
@ -113,12 +123,14 @@ csv data will be in directory:
Linux: Linux:
```bash ```bash
./bin/plot_flight_borders.sh ../data/asotr/ 10.03.2025_00:00:00 23.04.2025_23:59:59 cd bin
./plot_flight_borders.sh ../data/asotr/ 10.03.2025_00:00:00 23.04.2025_23:59:59
``` ```
Windows: Windows:
```cmd ```cmd
.\bin\plot_flight_borders.bat ..\data\asotr\ 10.03.2025_00:00:00 23.04.2025_23:59:59 cd bin
plot_flight_borders.bat ..\data\asotr\ 10.03.2025_00:00:00 23.04.2025_23:59:59
``` ```
where: where:

View File

@ -174,7 +174,7 @@ pub mod asotr_data {
let mut fname = String::new(); let mut fname = String::new();
let msg_prev = format!("Error parsing filename {}:", filename_full); let msg_prev = format!("Error parsing filename {}:", filename_full);
match filename_full.rfind('/') { match filename_full.rfind('/').or_else(|| filename_full.rfind('\\')) {
Some(val) => { fname = (filename_full[val+1..filename_full.len()]).to_string(); } Some(val) => { fname = (filename_full[val+1..filename_full.len()]).to_string(); }
_ => { fname = filename_full.clone(); } _ => { fname = filename_full.clone(); }
} }

View File

@ -1 +1 @@
{"rustc_fingerprint":2742313010855374649,"outputs":{"15729799797837862367":{"success":true,"status":"","code":0,"stdout":"___\nlib___.rlib\nlib___.so\nlib___.so\nlib___.a\nlib___.so\n/home/danila/.rustup/toolchains/stable-x86_64-unknown-linux-gnu\noff\npacked\nunpacked\n___\ndebug_assertions\npanic=\"unwind\"\nproc_macro\ntarget_abi=\"\"\ntarget_arch=\"x86_64\"\ntarget_endian=\"little\"\ntarget_env=\"gnu\"\ntarget_family=\"unix\"\ntarget_feature=\"fxsr\"\ntarget_feature=\"sse\"\ntarget_feature=\"sse2\"\ntarget_has_atomic=\"16\"\ntarget_has_atomic=\"32\"\ntarget_has_atomic=\"64\"\ntarget_has_atomic=\"8\"\ntarget_has_atomic=\"ptr\"\ntarget_os=\"linux\"\ntarget_pointer_width=\"64\"\ntarget_vendor=\"unknown\"\nunix\n","stderr":""},"4614504638168534921":{"success":true,"status":"","code":0,"stdout":"rustc 1.83.0 (90b35a623 2024-11-26)\nbinary: rustc\ncommit-hash: 90b35a6239c3d8bdabc530a6a0816f7ff89a0aaf\ncommit-date: 2024-11-26\nhost: x86_64-unknown-linux-gnu\nrelease: 1.83.0\nLLVM version: 19.1.1\n","stderr":""}},"successes":{}} {"rustc_fingerprint":14808889899039181664,"outputs":{"7971740275564407648":{"success":true,"status":"","code":0,"stdout":"___.exe\nlib___.rlib\n___.dll\n___.dll\n___.lib\n___.dll\nC:\\Users\\danil\\.rustup\\toolchains\\stable-x86_64-pc-windows-msvc\npacked\n___\ndebug_assertions\npanic=\"unwind\"\nproc_macro\ntarget_abi=\"\"\ntarget_arch=\"x86_64\"\ntarget_endian=\"little\"\ntarget_env=\"msvc\"\ntarget_family=\"windows\"\ntarget_feature=\"cmpxchg16b\"\ntarget_feature=\"fxsr\"\ntarget_feature=\"sse\"\ntarget_feature=\"sse2\"\ntarget_feature=\"sse3\"\ntarget_has_atomic=\"128\"\ntarget_has_atomic=\"16\"\ntarget_has_atomic=\"32\"\ntarget_has_atomic=\"64\"\ntarget_has_atomic=\"8\"\ntarget_has_atomic=\"ptr\"\ntarget_os=\"windows\"\ntarget_pointer_width=\"64\"\ntarget_vendor=\"pc\"\nwindows\n","stderr":""},"17747080675513052775":{"success":true,"status":"","code":0,"stdout":"rustc 1.87.0 (17067e9ac 2025-05-09)\nbinary: rustc\ncommit-hash: 17067e9ac6d7ecb70e50f92c1944e545188d2359\ncommit-date: 2025-05-09\nhost: x86_64-pc-windows-msvc\nrelease: 1.87.0\nLLVM version: 20.1.1\n","stderr":""}},"successes":{}}

View File

@ -232,12 +232,10 @@ def get_data(path, asotr_kit, start_date, end_date, time_accuracy):
fname = [path + fname_temp, path + fname_tempSet, path + fname_pow] fname = [path + fname_temp, path + fname_tempSet, path + fname_pow]
dateparse = lambda x: datetime.strptime(x, "%d.%m.%Y %H:%M:%S.%f")
try: try:
data = [ pd.read_csv(fname[0], sep=";", parse_dates=["timestamp"], date_parser=dateparse), data = [ pd.read_csv(fname[0], sep=";", parse_dates=["timestamp"], date_format="%d.%m.%Y %H:%M:%S.%f"),
pd.read_csv(fname[1], sep=";", parse_dates=["timestamp"], date_parser=dateparse), pd.read_csv(fname[1], sep=";", parse_dates=["timestamp"], date_format="%d.%m.%Y %H:%M:%S.%f"),
pd.read_csv(fname[2], sep=";", parse_dates=["timestamp"], date_parser=dateparse),] pd.read_csv(fname[2], sep=";", parse_dates=["timestamp"], date_format="%d.%m.%Y %H:%M:%S.%f"),]
except FileNotFoundError: except FileNotFoundError:
print(f'Error opening file: one (or all) file not found in directory: \n{fname}') print(f'Error opening file: one (or all) file not found in directory: \n{fname}')
return return

View File

@ -12,10 +12,10 @@ copy "..\asotr_csv\target\release\asotr_csv.exe" .\
set "path_=%~1" set "path_=%~1"
REM unpacking recursively archive using Python script REM unpacking recursively archive using Python script
python recursive_unpack_targz.py "%path_%" python recursive_unpack_targz.py %path_%
REM run parser REM run parser
asotr_csv.exe -d "%path_%" asotr_csv.exe -d %path_%
REM plot data REM plot data
python plot_asotr_flight_all.py python plot_asotr_flight_all.py

View File

@ -1,140 +0,0 @@
import pandas as pd
import os
import re
from pathlib import Path
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
tstamp_s = '%d.%m.%Y %H:%M:%S.%f'
ox_dtime_format = '%d.%m.%Y %H:%M'
path_itog_brd_data = '../data/brd_data/'
class PathFileNotFound(Exception):
pass
def find_required_files(root_dir, pattern):
result = []
for dirpath, _, filenames in os.walk(root_dir):
for filename in filenames:
match = re.match(pattern, filename)
if match:
result.append(dirpath + '/' + filename)
if len(result) == 0:
raise PathFileNotFound(f'error: check that the path is correct ({root_dir}) or files pattern is correct ({pattern})')
return sorted(result)
def read_files_into_df(fname_list, column_list, dtype_columns={}):
data_itog = pd.DataFrame()
epoch_start = pd.Timestamp('2000-01-01')
for fname in fname_list:
data = pd.read_csv(fname, sep=r'\s+', dtype=str)
data = data.dropna()
data = data[column_list]
if 'TIME' in column_list:
# convert TIME value to human-readable timestamp (sinse epoch 01.01.2000)
time = data['TIME'].astype(float)
tstamp = epoch_start + pd.to_timedelta(time, unit='s')
timestamp = tstamp.dt.strftime(tstamp_s)
data['timestamp'] = timestamp
# clear dataframe rows where time value == 0
data['time'] = time
data_clear = data.query('time != 0.0')
data_itog = pd.concat([data_itog, data_clear], ignore_index=True)
return data_itog
def collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog):
patterns_tm = [r'mvn_tm_brd01_(.*)', r'mvn_tm_brd02_(.*)', r'mvn_tm_brd03_(.*)',
r'mvn_tm_brd04_(.*)']
for pattern in patterns_tm:
fname = path_itog_brd_data + pattern[:12] + '.csv'
try:
found_files = find_required_files(root_dir_tm_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={11: float})
except KeyError as e:
print(f'error in collect_tm_brd_files: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_files: {e}')
break
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
def collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog):
patterns_wheel = [r'mvn_wheel_brd01_(.*)', r'mvn_wheel_brd02_(.*)', r'mvn_wheel_brd03_(.*)',
r'mvn_wheel_brd04_(.*)']
for pattern in patterns_wheel:
fname = path_itog_brd_data + pattern[:15] + '.csv'
try:
found_files = find_required_files(root_dir_wheel_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={0: float, 1: int})
except KeyError as e:
print(f'error in collect_tm_brd_wheel_data: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_wheel_data: {e}')
break
mask = data['STATE'] == '0'
data = data[mask]
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
### collect raw tm brd data into one file for each brd ###
root_dir_tm_data = '/home/danila/Danila/work/MVN/flight/brd_data/arch_for_MB/archive_tm_data_txt/'
column_list = ['TIME', 'PER_1Hz', 'ST_HV']
column_list_itog = ['TIME', 'timestamp', 'PER_1Hz', 'ST_HV']
collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog)
### collect raw tm wheel data into one file for each brd ###
root_dir_wheel_data = '/home/danila/Danila/work/MVN/flight/brd_data/arch_for_MB/archive_wheel_data_txt/'
column_list = ['TIME', 'STATE']
column_list_itog = ['TIME', 'timestamp', 'STATE']
collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog)
## plot 'evolution' 1 Hz from tm brd data
fname = path_itog_brd_data + 'mvn_tm_brd01.csv'
dateparse = lambda x: datetime.strptime(x, tstamp_s)
df = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_parser=dateparse)
plt.plot(df['timestamp'], df['PER_1Hz'], '.')
plt.show()
## parse and plot wheel csv data
border_clr_wheel = 2
fname = path_itog_brd_data + 'mvn_wheel_brd01.csv'
wheel_df = pd.read_csv(fname, sep=';')
wheel_df['TIME_diff'] = wheel_df['TIME'].diff()
median_tdiff = wheel_df['TIME_diff'].median()
wheel_df_clear = wheel_df[(wheel_df['TIME_diff'] > median_tdiff - border_clr_wheel) &
(wheel_df['TIME_diff'] < median_tdiff + border_clr_wheel)]
wheel_df_peaks = wheel_df[(wheel_df['TIME_diff'] <= median_tdiff - border_clr_wheel) |
(wheel_df['TIME_diff'] >= median_tdiff + border_clr_wheel)]
plt.plot(wheel_df_clear['TIME'], wheel_df_clear['TIME_diff'])
plt.show()

View File

@ -31,21 +31,18 @@ width=[1, 1, 1, 1, 1, 1]
marker = ['-', '-', '-', '-', '--', '-']; marker = ['-', '-', '-', '-', '--', '-'];
width_arr = [1, 0.5, 0.2, 0.1, 1, 1] width_arr = [1, 0.5, 0.2, 0.1, 1, 1]
dateparse = lambda x: datetime.strptime(x, "%d.%m.%Y %H:%M:%S.%f")
dparse_b = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
data_b = pd.read_excel(fname_B, data_b = pd.read_excel(fname_B,
sheet_name=0, sheet_name=0,
usecols=[0,1,2], usecols=[0,1,2],
header=4, header=4,
names=['turn_num', 'beta_angle', 'timestamp'], names=['turn_num', 'beta_angle', 'timestamp'],
parse_dates=['timestamp'], parse_dates=['timestamp'],
date_parser=dparse_b) date_format='%Y-%m-%d %H:%M:%S')
fname = [path + fname, path + fname_pow] fname = [path + fname, path + fname_pow]
data = [pd.read_csv(fname[0], sep=';', parse_dates=['timestamp'], date_parser=dateparse), data = [pd.read_csv(fname[0], sep=';', parse_dates=['timestamp'], date_format="%d.%m.%Y %H:%M:%S.%f"),
pd.read_csv(fname[1], sep=';', parse_dates=['timestamp'], date_parser=dateparse)] pd.read_csv(fname[1], sep=';', parse_dates=['timestamp'], date_format="%d.%m.%Y %H:%M:%S.%f")]
ch= [[], [], [], [], [], []] ch= [[], [], [], [], [], []]
ch_signs = ["temp", "pow"] ch_signs = ["temp", "pow"]
@ -80,7 +77,7 @@ if plot_windows == 1:
ax.tick_params(axis="both", width=1, labelsize=font) ax.tick_params(axis="both", width=1, labelsize=font)
ax.grid(visible=True, linestyle = 'dotted') ax.grid(visible=True, linestyle = 'dotted')
ax.set_ylabel('Температура, $^\circ$C', fontsize=font) ax.set_ylabel(r"Температура, $^\circ$C", fontsize=font)
ax.set_xlabel('Время', fontsize=font) ax.set_xlabel('Время', fontsize=font)
ax.legend(fontsize=font) ax.legend(fontsize=font)
@ -117,7 +114,7 @@ elif plot_windows == 2:
ax1.tick_params(axis="both", width=1, labelsize=font) ax1.tick_params(axis="both", width=1, labelsize=font)
ax1.grid(visible=True, linestyle = 'dotted') ax1.grid(visible=True, linestyle = 'dotted')
ax1.set_ylabel('Температура, $^\circ$C', fontsize=font) ax1.set_ylabel(r"Температура, $^\circ$C", fontsize=font)
ax1.set_xlabel('Время', fontsize=font) ax1.set_xlabel('Время', fontsize=font)
ax1.legend(fontsize=font, loc='lower right') ax1.legend(fontsize=font, loc='lower right')

View File

@ -6,16 +6,16 @@ IF "%~2"=="" (
goto :EOF goto :EOF
) )
set "path_csv_data=..\data\asotr" set "path_csv_data=..\data\asotr\"
set "begin=%~1" set "begin=%~1"
set "end=%~2" set "end=%~2"
REM run Python-script with parameters REM run Python-script with parameters
python plot_flight_borders.py -s "%path_csv_data%" -c 111100 -a 01 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 111100 -a 01 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 001000 -a 01 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 001000 -a 01 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 000011 -a 01 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 000011 -a 01 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 111100 -a 02 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 111100 -a 02 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 010100 -a 02 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 010100 -a 02 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 010000 -a 02 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 010000 -a 02 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 000100 -a 02 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 000100 -a 02 -b %begin% -e %end%
python plot_flight_borders.py -s "%path_csv_data%" -c 000011 -a 02 -b %begin% -e %end% python plot_flight_borders.py -s %path_csv_data% -c 000011 -a 02 -b %begin% -e %end%

View File

@ -15,7 +15,7 @@ def plot_asotr_borders(path_with_data, ch, asotr_kit, begin, end, font=14, cmd=0
plot_windows = 2 plot_windows = 2
channels = list(map(int, ch)) channels = list(map(int, ch))
pict_name = (f'../plots/reports/ASOTR{asotr_kit}_flight_T_P_{asotr.convert_to_str(channels)}_{begin[0:5].replace(".", "")}_{end[0:5].replace(".", "")}_{end[6:]}.png') pict_name = (f'../plots/reports/ASOTR{asotr_kit}_flight_T_P_{asotr.convert_to_str(channels)}_{begin[0:5].replace(".", "")}_{end[0:5].replace(".", "")}.png')
plot_task = {"temp": 1, "temp_set": 1, "pow": 1} plot_task = {"temp": 1, "temp_set": 1, "pow": 1}
ox_dtime_format = "%d.%m.%Y" ox_dtime_format = "%d.%m.%Y"
@ -57,7 +57,7 @@ def plot_asotr_borders(path_with_data, ch, asotr_kit, begin, end, font=14, cmd=0
ax.tick_params(axis="both", width=1, labelsize=font) ax.tick_params(axis="both", width=1, labelsize=font)
ax.grid(visible=True, linestyle="dotted") ax.grid(visible=True, linestyle="dotted")
ax.set_ylabel("Температура, $^\circ$C", fontsize=font) ax.set_ylabel(r"Температура, $^\circ$C", fontsize=font)
ax.set_xlabel("Время", fontsize=font) ax.set_xlabel("Время", fontsize=font)
ax.legend(fontsize=font) ax.legend(fontsize=font)
@ -131,7 +131,7 @@ def plot_asotr_borders(path_with_data, ch, asotr_kit, begin, end, font=14, cmd=0
ax1.tick_params(axis="both", width=1, labelsize=font) ax1.tick_params(axis="both", width=1, labelsize=font)
ax1.grid(visible=True, linestyle="dotted") ax1.grid(visible=True, linestyle="dotted")
ax1.set_ylabel("Температура, $^\circ$C", fontsize=font) ax1.set_ylabel(r"Температура, $^\circ$C", fontsize=font)
ax1.set_xlabel("Время", fontsize=font) ax1.set_xlabel("Время", fontsize=font)
ax1.legend(fontsize=font) ax1.legend(fontsize=font)

101
bin/tm_brd_parser.py Normal file
View File

@ -0,0 +1,101 @@
import pandas as pd
import os
import re
from pathlib import Path
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import sys
tstamp_s = '%d.%m.%Y %H:%M:%S.%f'
ox_dtime_format = '%d.%m.%Y %H:%M'
path_itog_brd_data = '../data/brd_data/'
class PathFileNotFound(Exception):
pass
def find_required_files(root_dir, pattern):
result = []
for dirpath, _, filenames in os.walk(root_dir):
for filename in filenames:
match = re.match(pattern, filename)
if match:
result.append(dirpath + '/' + filename)
if len(result) == 0:
raise PathFileNotFound(
f'error: check that the path is correct ({root_dir}) or files pattern is correct ({pattern})')
return sorted(result)
def read_files_into_df(fname_list, column_list, dtype_columns={}):
data_itog = pd.DataFrame()
epoch_start = pd.Timestamp('2000-01-01')
for fname in fname_list:
data = pd.read_csv(fname, sep=r'\s+', dtype=str)
data = data.dropna()
data = data[column_list]
if 'TIME' in column_list:
# convert TIME value to human-readable timestamp (sinse epoch 01.01.2000)
time = data['TIME'].astype(float)
tstamp = epoch_start + pd.to_timedelta(time, unit='s')
timestamp = tstamp.dt.strftime(tstamp_s)
data['timestamp'] = timestamp
# clear dataframe rows where time value == 0
data['time'] = time
data_clear = data.query('time != 0.0')
data_itog = pd.concat([data_itog, data_clear], ignore_index=True)
return data_itog
def collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog):
patterns_tm = [r'mvn_tm_brd01_(.*)', r'mvn_tm_brd02_(.*)', r'mvn_tm_brd03_(.*)',
r'mvn_tm_brd04_(.*)']
for pattern in patterns_tm:
fname = path_itog_brd_data + pattern[:12] + '.csv'
try:
found_files = find_required_files(root_dir_tm_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={11: float})
except KeyError as e:
print(
f'error in collect_tm_brd_files: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_files: {e}')
break
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python tm_brd_parser.py /path/to/tm_brd_data/")
else:
root_dir_tm_data = sys.argv[1]
print('collect raw brd tm data into one file for each brd')
column_list = ['TIME', 'PER_1Hz', 'ST_HV']
column_list_itog = ['TIME', 'timestamp', 'PER_1Hz', 'ST_HV']
collect_tm_brd_files(root_dir_tm_data, column_list, column_list_itog)
## plot 'evolution' 1 Hz from tm brd data
print('plot evolution 1 Hz from tm brd data')
fname = path_itog_brd_data + 'mvn_tm_brd01.csv'
df = pd.read_csv(fname, sep=';', parse_dates=['timestamp'], date_format="%d.%m.%Y %H:%M:%S.%f")
plt.plot(df['timestamp'], df['PER_1Hz'], '.')
plt.show()

114
bin/tm_wheel_parser.py Normal file
View File

@ -0,0 +1,114 @@
import pandas as pd
import os
import re
from pathlib import Path
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import sys
tstamp_s = '%d.%m.%Y %H:%M:%S.%f'
ox_dtime_format = '%d.%m.%Y %H:%M'
path_itog_brd_data = '../data/brd_data/'
class PathFileNotFound(Exception):
pass
def find_required_files(root_dir, pattern):
result = []
for dirpath, _, filenames in os.walk(root_dir):
for filename in filenames:
match = re.match(pattern, filename)
if match:
result.append(dirpath + '/' + filename)
if len(result) == 0:
raise PathFileNotFound(
f'error: check that the path is correct ({root_dir}) or files pattern is correct ({pattern})')
return sorted(result)
def read_files_into_df(fname_list, column_list, dtype_columns={}):
data_itog = pd.DataFrame()
epoch_start = pd.Timestamp('2000-01-01')
for fname in fname_list:
data = pd.read_csv(fname, sep=r'\s+', dtype=str)
data = data.dropna()
data = data[column_list]
if 'TIME' in column_list:
# convert TIME value to human-readable timestamp (sinse epoch 01.01.2000)
time = data['TIME'].astype(float)
tstamp = epoch_start + pd.to_timedelta(time, unit='s')
timestamp = tstamp.dt.strftime(tstamp_s)
data['timestamp'] = timestamp
# clear dataframe rows where time value == 0
data['time'] = time
data_clear = data.query('time != 0.0')
data_itog = pd.concat([data_itog, data_clear], ignore_index=True)
return data_itog
def collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog):
patterns_wheel = [r'mvn_wheel_brd01_(.*)', r'mvn_wheel_brd02_(.*)', r'mvn_wheel_brd03_(.*)',
r'mvn_wheel_brd04_(.*)']
for pattern in patterns_wheel:
fname = path_itog_brd_data + pattern[:15] + '.csv'
try:
found_files = find_required_files(root_dir_wheel_data, pattern)
data = read_files_into_df(found_files, column_list, dtype_columns={0: float, 1: int})
except KeyError as e:
print(
f'error in collect_tm_brd_wheel_data: the specified column name was not found in the data file (path: {root_dir_tm_data}) ({e})')
break
except Exception as e:
print(f'error in collect_tm_brd_wheel_data: {e}')
break
mask = data['STATE'] == '0'
data = data[mask]
data.to_csv(fname, index=False, sep=';', columns=column_list_itog, encoding='utf-8-sig')
print('data saved: ' + fname)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python tm_wheel_parser.py /path/to/tm_brd_data/")
else:
root_dir_wheel_data = sys.argv[1]
### collect raw tm wheel data into one file for each brd ###
print('collect raw tm wheel data into one file for each brd')
column_list = ['TIME', 'STATE']
column_list_itog = ['TIME', 'timestamp', 'STATE']
collect_tm_brd_wheel_data(root_dir_wheel_data, column_list, column_list_itog)
## parse and plot wheel csv data
print('parse and plot wheel csv data')
border_clr_wheel = 2
fname = path_itog_brd_data + 'mvn_wheel_brd01.csv'
wheel_df = pd.read_csv(fname, sep=';')
wheel_df['TIME_diff'] = wheel_df['TIME'].diff()
median_tdiff = wheel_df['TIME_diff'].median()
wheel_df_clear = wheel_df[(wheel_df['TIME_diff'] > median_tdiff - border_clr_wheel) &
(wheel_df['TIME_diff'] < median_tdiff + border_clr_wheel)]
wheel_df_peaks = wheel_df[(wheel_df['TIME_diff'] <= median_tdiff - border_clr_wheel) |
(wheel_df['TIME_diff'] >= median_tdiff + border_clr_wheel)]
plt.plot(wheel_df_clear['TIME'], wheel_df_clear['TIME_diff'], '-')
plt.plot(wheel_df_peaks['TIME'], wheel_df_peaks['TIME_diff'], '.')
plt.show()

BIN
data/asotr/beta_2025.xlsx Normal file

Binary file not shown.