generated from erosita/uds
IKI
This commit is contained in:
@@ -72,6 +72,8 @@ sx=int(hdulist[0].header['NAXIS1'])
|
||||
sy=int(hdulist[0].header['NAXIS2'])
|
||||
|
||||
# fill AITOF map indexes
|
||||
# Already done in 02_grxe_resid.py
|
||||
"""
|
||||
ds9x=[]
|
||||
ds9y=[]
|
||||
for i,row in df.iterrows():
|
||||
@@ -88,6 +90,7 @@ for i,row in df.iterrows():
|
||||
#print(x,y,smap[y-1,x-1])
|
||||
df['DS9Y']=ds9x
|
||||
df['DS9X']=ds9y
|
||||
"""
|
||||
|
||||
#
|
||||
# initiate 2d arrays
|
||||
@@ -128,28 +131,31 @@ for i in range(sx):
|
||||
|
||||
ds9i=i+1
|
||||
ds9j=j+1
|
||||
#df0 = df.query('DS9X == {} & DS9Y == {}'.format(ds9i,ds9j))
|
||||
df0 = df.query('DS9X == {} & DS9Y == {} & REV != @ign'.format(ds9i,ds9j))
|
||||
if (df0.shape[0] <= nscw_min):
|
||||
if (df0.shape[0] < nscw_min):
|
||||
continue
|
||||
print("*** *** SUM *** ***")
|
||||
print(np.sum(df0["GRXE"]))
|
||||
|
||||
#print("*** *** REV *** ***")
|
||||
#print(df0["REV"])
|
||||
|
||||
# check coordinates
|
||||
#print("***",i+1,j+1,lon,lat,smap[j][i])
|
||||
#for i0,row0 in df0.iterrows():
|
||||
# print(row0['LON'],row0['LAT'],row0['GRXE'])
|
||||
|
||||
|
||||
sg_mean,sg_sem = get_spec(df0, sigma=sigma, grxe_err_cut=grxe_err_cut, enkey=enkey)
|
||||
sg_mean,sg_sem = get_spec(df0, sigma=sigma, grxe_err_cut=grxe_err_cut, enkey=enkey, nscw_min=nscw_min)
|
||||
|
||||
nsel = int(df0.shape[0]/simfrac)
|
||||
print("nsel=",nsel,df0.shape[0],len(df0['GRXE']))
|
||||
#print("nsel=",nsel,df0.shape[0])
|
||||
for n in range(nsim):
|
||||
df1=df0.sample(nsel)
|
||||
sg_mean1,sg_sem1 = get_spec(df1, grxe_err_cut=grxe_err_cut, enkey=enkey)
|
||||
sg_mean1,sg_sem1 = get_spec(df1, grxe_err_cut=grxe_err_cut, enkey=enkey, nscw_min=nscw_min)
|
||||
mean_sim[dkey].append(sg_mean1)
|
||||
|
||||
|
||||
print('sg_sem',sg_sem)
|
||||
#print('sg_sem',sg_sem)
|
||||
mean_map[j][i] = sg_mean
|
||||
sem_map[j][i] = sg_sem
|
||||
sign_map[j][i] = sg_mean/sg_sem
|
||||
@@ -166,16 +172,22 @@ for i in range(sx):
|
||||
|
||||
""" Filter by error map """
|
||||
# Calculate the percentiles across the x and y dimension
|
||||
perc = np.percentile(sem_map, sem_cut, axis=(0, 1), keepdims=False)
|
||||
|
||||
|
||||
perc = np.percentile(sem_map, sem_cut, axis=(0, 1), keepdims=False)
|
||||
print("{} {}: {}% cut of SEM map: {:.2f} mCrab".format(key,enkey,sem_cut,perc))
|
||||
|
||||
idx=np.where(sem_map > perc)
|
||||
print("index size {}".format(len(idx)))
|
||||
mean_map[idx]=0.0
|
||||
sem_map[idx]=0.0
|
||||
cnt_map[idx]=0
|
||||
sign_map[idx]=0.0
|
||||
|
||||
#mean_sim_map[idx]=0.0
|
||||
#error_sim_map[idx]=0.0
|
||||
|
||||
|
||||
if not os.path.exists(mapsdir):
|
||||
os.makedirs(mapsdir)
|
||||
|
||||
@@ -191,15 +203,24 @@ hdulist.writeto(mapsdir+fn.replace(".fits",".cnt.fits"),overwrite=True)
|
||||
hdulist[0].data=sign_map
|
||||
hdulist.writeto(mapsdir+fn.replace(".fits",".sign.fits"),overwrite=True)
|
||||
|
||||
|
||||
print("saving simulations")
|
||||
for i in range(sx):
|
||||
for j in range(sy):
|
||||
dkey="{:04d}{:04d}".format(j,i)
|
||||
data=mean_sim[dkey]
|
||||
(mu, sg) = norm.fit(data)
|
||||
mean_sim_map[j][i] = mu
|
||||
error_sim_map[j][i] = sg
|
||||
#print("{} size {}".format(dkey,len(data)))
|
||||
if(len(data)>10):
|
||||
(mu, sg) = norm.fit(data)
|
||||
mean_sim_map[j][i] = mu
|
||||
error_sim_map[j][i] = sg
|
||||
|
||||
perc = np.percentile(error_sim_map, sem_cut, axis=(0, 1), keepdims=False)
|
||||
print("{} {}: {}% cut of SEM map: {:.2f} mCrab".format(key,enkey,sem_cut,perc))
|
||||
|
||||
idx=np.where(error_sim_map > perc)
|
||||
print("index size {}".format(len(idx)))
|
||||
mean_sim_map[idx]=0.0
|
||||
error_sim_map[idx]=0.0
|
||||
|
||||
hdulist[0].data=mean_sim_map
|
||||
hdulist.writeto(mapsdir+fn.replace(".fits",".sim.mean.fits"),overwrite=True)
|
||||
|
Reference in New Issue
Block a user