na Kubani

This commit is contained in:
Roman Krivonos
2024-07-23 09:42:16 +03:00
parent 99dc2aa8f6
commit 8ee76a8070
896 changed files with 258624 additions and 205715 deletions

View File

@@ -45,9 +45,9 @@ enkey = sys.argv[1]
key="ALL"
fn='detcnts.{}.{}.resid.fits'.format(enkey,key)
d = fits.getdata(proddir+fn)
df=pd.DataFrame(np.array(d).byteswap().newbyteorder())
#print(df.columns)
print("Reading {}".format(proddir+fn))
dat = Table.read(proddir+fn, unit_parse_strict='silent')
df = dat.to_pandas()
#df = df.query('abs(LAT) < {} & abs(LON) < {}'.format(5,5))
@@ -56,7 +56,14 @@ minmax=[-300,800]
sigma=3
maxiters=10
modelrxte="allsky/modelrxte_ait_3to20keV_flux_2deg.fits"
with open(ignored_rev_file, 'rb') as fp:
ignored_rev = pickle.load(fp)
print(ignored_rev)
print("{} orbits ignored".format(len(ignored_rev)))
ign=ignored_rev.tolist()
hdulist = fits.open(datadir+modelrxte)
w = wcs.WCS(hdulist[0].header)
smap =hdulist[0].data
@@ -82,75 +89,81 @@ for i,row in df.iterrows():
df['DS9Y']=ds9x
df['DS9X']=ds9y
#
# initiate 2d arrays
#
mean_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sign_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sem_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
cnt_map = np.array([[0 for i in range(sx)] for j in range(sy)])
# simulations
mean_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
error_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
sign_sim_map = np.array([[0.0 for i in range(sx)] for j in range(sy)])
mean_sim={}
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
mean_sim[dkey] = []
obsid_map = {}
grxe_map = {}
grxe_err_map = {}
# redefine simfrac for low number of ScWs in pixel
simfrac=2
nsim=100
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
world = w.wcs_pix2world([(i+1,j+1)], 1)
lon = world[0][0]
lat = world[0][1]
if(np.isnan(lon) or np.isnan(lat)):
continue
ds9i=i+1
ds9j=j+1
df0 = df.query('DS9X == {} & DS9Y == {}'.format(ds9i,ds9j))
if (len(df0) <= nscw_min):
df0 = df.query('DS9X == {} & DS9Y == {} & REV != @ign'.format(ds9i,ds9j))
if (df0.shape[0] <= nscw_min):
continue
print("*** *** SUM *** ***")
print(np.sum(df0["GRXE"]))
# check coordinates
#print("***",i+1,j+1,lon,lat,smap[j][i])
#for i0,row0 in df0.iterrows():
# print(row0['LON'],row0['LAT'],row0['GRXE'])
grxe_err = np.array(df0['GRXE_ERR'])
perc = np.percentile(grxe_err, grxe_err_cut, axis=0, keepdims=False)
print("{} {}: {}% cut of GRXE ERR: {:.2f} mCrab".format(key,enkey,grxe_err_cut,perc))
df0 = df.query('DS9X == {} & DS9Y == {} & GRXE_ERR < {}'.format(ds9i,ds9j,perc))
if (len(df0) <= nscw_min):
continue
sg_mean,sg_sem = get_spec(df0, sigma=sigma, grxe_err_cut=grxe_err_cut, enkey=enkey)
nsel = int(df0.shape[0]/simfrac)
print("nsel=",nsel,df0.shape[0],len(df0['GRXE']))
for n in range(nsim):
df1=df0.sample(nsel)
sg_mean1,sg_sem1 = get_spec(df1, grxe_err_cut=grxe_err_cut, enkey=enkey)
mean_sim[dkey].append(sg_mean1)
obsid = np.array(df0['OBSID'])
grxe = np.array(df0['GRXE'])
grxe_err = np.array(df0['GRXE_ERR'])
sg_mean, sg_med, sg_std = sigma_clipped_stats(grxe, sigma=sigma, maxiters=maxiters)
filtered_data = sigma_clip(grxe, sigma=sigma, maxiters=maxiters, return_bounds=True)
filtered_grxe = filtered_data[0]
filtered_min = filtered_data[1]
filtered_max = filtered_data[2]
# final error on flux measurement ~RMS/sqrt(n)
sg_sem = sem(grxe[filtered_grxe.mask==False])
obsid=obsid[filtered_grxe.mask==False]
#print("Sigma clipping: mean {:.2f} med {:.2f} std {:.2f} sem {:.2f}".format(sg_mean, sg_med, sg_std, sg_sem))
#plt.hist(grxe, bins=n_bins, range=minmax)
#plt.hist(grxe[filtered_grxe.mask], bins=n_bins, range=minmax)
#plt.show()
print('sg_sem',sg_sem)
mean_map[j][i] = sg_mean
sem_map[j][i] = sg_sem
sign_map[j][i] = sg_mean/sg_sem
cnt_map[j][i] = df0.shape[0]
dkey="{:04d}{:04d}".format(j,i)
"""
obsid_map[dkey] = obsid
grxe_map[dkey] = grxe
grxe_err_map[dkey] = grxe_err
"""
""" Filter by error map """
# Calculate the percentiles across the x and y dimension
perc = np.percentile(sem_map, sem_cut, axis=(0, 1), keepdims=False)
@@ -178,7 +191,23 @@ hdulist.writeto(mapsdir+fn.replace(".fits",".cnt.fits"),overwrite=True)
hdulist[0].data=sign_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sign.fits"),overwrite=True)
for i in range(sx):
for j in range(sy):
dkey="{:04d}{:04d}".format(j,i)
data=mean_sim[dkey]
(mu, sg) = norm.fit(data)
mean_sim_map[j][i] = mu
error_sim_map[j][i] = sg
hdulist[0].data=mean_sim_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sim.mean.fits"),overwrite=True)
hdulist[0].data=error_sim_map
hdulist.writeto(mapsdir+fn.replace(".fits",".sim.error.fits"),overwrite=True)
sys.exit()
print("Prepare data for fine map")
obsid_list=[]